본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Biomolecules & therapeutics v.18 no.3, 2010년, pp.280 - 285   SCIE SCOPUS
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Chitosan Increases α6 Integrinhigh/CD71high Human Keratinocyte Transit-Amplifying Cell Population

Shin, Dong-Wook    (Skin Research Institute, AmorePacific Corporation R&D Center   ); Shim, Joong-Hyun    (Skin Research Institute, AmorePacific Corporation R&D Center   ); Kim, Yoon-Kyung    (Skin Research Institute, AmorePacific Corporation R&D Center   ); Son, Eui-Dong    (Skin Research Institute, AmorePacific Corporation R&D Center   ); Yang, Seung-Ha    (Skin Research Institute, AmorePacific Corporation R&D Center   ); Jeong, Hye-Jin    (Skin Research Institute, AmorePacific Corporation R&D Center   ); Lee, Seok-Yong    (Department of Pharmacy, Sungkyunkwan University   ); Kim, Han-Kon    (Department of Pharmacy, Sungkyunkwan University   ); Park, Soo-Nam    (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology   ); Noh, Min-Soo    (Skin Research Institute, AmorePacific Corporation R&D Center  );
  • 초록

    Glycosaminoglycans (GAGs) and chitosan have been used as matrix materials to support the dermal part of skin equivalent which is used for both pharmacological and toxicological evaluations of drugs potentially used for dermatological diseases. However, their biological roles of GAGs and chitosan in the skin equivalent are still unknown. In the present study, we evaluated whether GAGs and chitosan directly affect keratinocyte stem cells (KSCs) and their transit-amplifying cells (TA cells). Among supporting matrix materials, chitosan significantly increased the number of ${\alpha}6$ $integrin^{high}/CD71^{high}$ human keratinocyte TA cells by 48.5%. In quantitative real-time RT-PCR analysis, chitosan significantly increased CD71 and CD200 gene transcription whereas not ${\alpha}6$ integrin. In addition, the level of the gene transcription of both keratin 1 (K1) and K10 in the chitosan-treated human keratinocytes was significantly lower than those of control, suggesting that chitosan inhibit keratinocyte differentiation. We also found that N-acetyl-D-glucosamine (NAG) and $\beta$ -(1-4)-linked D-glucosamine (D-glc), two components of chitosan, have no effect on the expression of CD71, K1, and K10, suggesting that each monomer component of chitosan is not enough to regulate the number of epidermal keratinocyte lineage. Conclusively, chitosan increases keratinocyte TA cell population which may contribute to the cellular mass expansion of the epidermal part of a skin equivalent system.


  • 주제어

    Chitosan .   Keratinocyte stem cells .   Transit-amplifying cells .   CD71 .   K1 .   K10.  

  • 참고문헌 (24)

    1. Alonso, L. and Fuchs, E. (2003). Stem cells of the skin epithelium. Proc. Natl. Acad. Sci. U S A 100, 11830-11835. 
    2. Augustin, C., Frei, V., Perrier, E., Huc, A. and Damour, O. (1997). A skin equivalent model for cosmetological trials: an in vitro efficacy study of a new biopeptide. Skin Pharmacol. 10, 63-70. 
    3. Black, A. F., Bouez, C., Perrier, E., Schlotmann, K., Chapuis, F. and Damour, O. (2005). Optimization and characterization of an engineered human skin equivalent. Tissue Eng. 11, 723-733. 
    4. Blanpain, C. and Fuchs, E. (2006). Epidermal stem cells of the skin. Annu. Rev. Cell. Dev. Biol. 22, 339-373. 
    5. Candi, E., Schmidt, R. and Melino, G. (2005). The cornified envelope: a model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 6, 328-340. 
    6. Drozdoff, V. and Pledger, W. J. (1993). Commitment to differentiation and expression of early differentiation markers in murine keratinocytes in vitro are regulated independently of extracellular calcium concentrations. J. Cell Biol. 123, 909-919. 
    7. Duplan-Perrat, F., Damour, O., Montrocher, C., Peyrol, S., Grenier, G., Jacob, M. P. and Braye, F. (2000). Keratinocytes influences the maturation and organization of the elastin network in a skin equivalent. J. Invest. Dermatol. 114, 365-370. 
    8. Eichner, R., Sun, T. T. and Aebi, U. (1986). The role of keratin subfamilies and keratin pairs in the formation of human epidermal intermediate filaments. J. Cell Biol. 102, 1767-1777. 
    9. Fuchs, E. (2007). Scratching the surface of skin development. Nature 445, 834-842. 
    10. Fuchs, E. (2008). Skin stem cells: rising to the surface. J. Cell Biol. 180, 273-284. 
    11. Harding, C. R. and Scott, I. R. (1983). Histidine-rich proteins (filaggrins): structural and functional heterogeneity during epidermal differentiation. J. Mol. Biol. 170, 651-673. 
    12. Houben, E., De Paepe, K. and Rogiers, V. (2007). Epidermal proliferation and differentiation kerainocyte’s courses of life. Skin Pharmacol. Physiol. Skin Pharmacol. Physiol. 20, 122-132. 
    13. Kaur, P. (2006). Interfollicular epidermal stem cells: identification, challenges, potential. J. Invest. Dermatol. 126, 1450-1458. 
    14. Kaur, P. and Li, A. (2000). Adhesive properties of human basal epidermal cells: an analysis of keratinocyte stem cells, transit amplifying cells, and postmitotic differentiating cells. J. Invest. Dermatol. 114, 413-420. 
    15. Larderet, G., Fortunel, N. O., Vaigot, P., Cegalerba, M, Maltere, P., Zobiri, O., Gidrol, X., Waksman, G. and Martin, M. T. (2006). Human side population keratinocytes exhibit longterm proliferative potential and a specific gene expression profile and can form a pluristratified epidermis. Stem Cells 24, 965-974. 
    16. Li, A., Pouliot, N., Redvers, R. and Kaur, P. (2004). Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny. J. Clin. Invest. 113, 390-400. 
    17. Li, A., Simmons, P. J. and Kaur, P. (1998). Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc. Natl. Acad. Sci. U S A 95, 3902-3907. 
    18. Morris, R. J., Fischer, S. M. and Slaga, T. J. (1985). Evidence that the centrally and peripherally located cells in the murine epidermal proliferative unit are two distinct cell populations. J. Invest. Dermatol. 84, 277-281. 
    19. Nagira, T., Nagahata-Ishiguro, M. and Tsuchiya, T. (2007). Effects of sulfated hyaluronan on keratinocyte differentiation and Wnt and Notch gene expression. Biomaterials 28, 844-850. 
    20. Noblesse, E., Cenizo, V., Bouez, C., Borel, A., Gleyzal, C., Peyrol, S., Jacob, M. P., Sommer, P. and Damour, O. (2004). Lysyl oxidase-like and lysyl oxidase are present in the dermis and epidermis of a skin equivalent and in human skin and are associated to elastic fibers. J. Invest. Dermatol. 122, 621-630. 
    21. Pfaffl, M. W., Horgan, G. W. and Dempfle, L. (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, e36. 
    22. Rice, R. H. and Green, H. (1979). Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell 18, 681-694. 
    23. Shahabeddin, L., Berthod, F., Damour, O. and Collombel, C. (1990). Characterization of skin reconstructed on a chitosancross-linked collagen-glycosaminoglycan matrix Skin Pharmacol. 3, 107-114. 
    24. Tani, H., Morris, R. J. and Kaur, P. (2000). Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc. Natl. Acad. Sci. U S A 97, 10960-10965. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
  • 한국응용약물학회 : 저널
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기