본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

멀티미디어학회논문지 = Journal of Korea Multimedia Society v.13 no.1, 2010년, pp.47 - 57   피인용횟수: 2
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Eigen-background와 Clustering을 이용한 객체 검출 시스템
An Object Detection System using Eigen-background and Clustering

전재덕    ((주)지노시스템 다차원공간기술연구소   ); 이미정    ((주)BIOSPACE   ); 김종호    (인제대학교 전산학과   ); 김상균    (인제대학교 컴퓨터공학과   ); 강병두    (인제대학교 컴퓨터공학부  );
  • 초록

    객체 검출은 영상에서 객체의 식별, 위치정보, 상황인식 등을 위해서 필수적이다. 본 논문에서는 강인한 객체 검출 시스템을 제안한다. Principal Component Analysis (PCA)를 이용하여 배경 영상에서 수집한 학습데이터를 주성분으로 선형변환 한다. 객체와 배경에 대하여 판별 능력이 우수한 주성분을 선별하여 Eigen-background를 구성한다. Fuzzy-C-Means (FCM)은 Eigen-background의 정보를 입력 차원으로 하여 영상을 Clustering하고 객체와 배경으로 분류한다. 고정된 카메라에서 배경변화에 적용 가능한 시스템을 구현하기 위해 동일한 시점에서 움직이는 객체가 포함된 영상을 학습데이터로 사용하였다. 제안하는 시스템은 인위적인 한 프레임을 배경으로 정의하여 사용하는 과정이 필요 없이 입력 영상에서 잡음이 제거된 객체와 배경으로 분류하였고, 또한 객체의 부분적인 움직임도 효과적으로 검출하였다.


    The object detection is essential for identifying objects, location information, and user context-aware in the image. In this paper, we propose a robust object detection system. The System linearly transforms learning data obtained from the background images to Principal components. It organizes the Eigen-background with the selected Principal components which are able to discriminate between foreground and background. The Fuzzy-C-means (FCM) carries out clustering for images with inputs from the Eigen-background information and classifies them into objects and backgrounds. It used various patterns of backgrounds as learning data in order to implement a system applicable even to the changing environments, Our system was able to effectively detect partial movements of a human body, as well as to discriminate between objects and backgrounds removing noises and shadows without anyone frame image for fixed background.


  • 주제어

    객제검출 .   주성분 분석.  

  • 참고문헌 (25)

    1. H. Tanie. K. Yamane and Y. Namura, "High Marker Density Motion Capture by Retroreflective Mesh Suit," International Conference on Robotics and Automation, pp.2884-2889, 2005. 
    2. S. Hashi, Y. Tokunaga, S. Yabukami, M. Toyoda, K. Ishiyama, Y. Okazaki, and K.I. Arai,"Development of realtime and highly accurate wireless capture system utilizing soft magnetic core," IEEE Transactions on Magnetics, Vol.41, pp. 4191-4193, 2005. 
    3. N. Miller, O.C. Jenkin, M. Kallmann, and M.J. Mataric, "Motion capture from inertial sensing for untethered humanoid teleoperation,." IEEE/RAS International Conference on Humanoid Robots, Vol.2, pp. 547-562, 2004. 
    4. S. Yabukami, H. Kikuchi, and M. Yamaguchi, "Motion Capture System of Magnetic Makers Using Three-Axial Magnetic Field Sensor," IEEE Transactions on magnetics, Vol.36, pp. 3646-3648, 2000. 
    5. L. Li, A Hilton, and Illingworth, "A relaxation algorithm for real-time multiple view 3D-tracking," Image and vision computing, Vol.20, pp. 841-859, 2002. 
    6. A. Sundaresan, and R. Chellappa, "Markerless Motion Capture using Multiple Cameras," Computer VIsion for Interactive and Intelligent Environment, pp. 15-26, 2005. 
    7. K.M. Cheung, S. Baker, and T Kanade, "Shape-From-Silhouette Across Time Part II: Applications to Human Modeling and Markerless Motion Tracking," International Journal of Computer Vision, Vol.63, pp.225-245, 2005. 
    8. G. Jing, D. Rajan, and C.H. Siong, "Motion Detection with Adaptive Background and Dynamic Thresholds," Information, Communications and Signal Processing, 2005 Fifth International Conference on 06-09, pp. 4-45, 2005. 
    9. Z. Chaohui , D. Xiaohui, X. Shuoyu, S. Zheng, and L. Min, "An Improved Moving Object Detection Algorithm Based on Frame Difference and Edge Detection," Image and Graphics Fourth International Conference on(ICIG), pp. 519-523, 2007. 
    10. C.R Wren, A Azarbayejani, T. Darrell, and A.P. Pentlancl. "Pfinder: real-time tracking of the human body," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.19. No.7, pp. 780-758, 1997. 
    11. N.M. Oliver, B. Rosario, and A Pentland, "A Bayesian computer vision system for modeling human interactions," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.22, No.8, pp. 831-843, 2000. 
    12. J. Yumel, J. Renno, D. Greenhill, J. Orwell, and G.A Jones, "Adaptive Eigen-Backgrounds for object detection," International Conference on Image Processing, 2004. 
    13. J. Zhang, and Y. Zhuang, "Adaptive Weight Selection for Incremental Eigen-Background Modeling," Multimedia and Expo, 2007 IEEE International Conference on, pp. 85-854, 2007. 
    14. R.A. Johnson, and D.W. Wichern, Applied Multiuariate Satistical Analysis, Prentice Hall, pp. 356-395, 2002. 
    15. M. Turk, and A. Pentland, "Face Recognition Using EigenFaces," IEEE Conference on Computer Vision and Pattern Recognition, pp.586-591. 1991. 
    16. 강병두, 권오화, 성치영 등, "주성분 분석과 서포트 벡터 머신을 이용한 효과적인 얼굴 검출 시스템," 한국멀티미디어학회 논문지, 제9권, 제11호, pp. 1435-1444, 2006.     
    17. 성치영, 강병두, 전재덕 등,"효과적인 검출기와 칼만 필터를 이용한 강인한 얼굴 추적 시스템," 한국멀티미디어 학회 논문지, 제10권, 제1호, pp.26-35, 2007.     
    18. B.D. Kang, J. S. Eom, J.H. Kim, C.S. Kim, S.H. Ahn, B.J. Shin, and S.K Kirn, "Human Motion Modeling Using Multivision," LNCS 4552, Human-Computer Interaction, Part III, HCII 2007, pp. 659-668, 2007. 
    19. J. H. Kim, B.D. Kang, J.S. Eom, C.S. Kim, S.H. Ahn, B.J. Shin, ancl S.K. Kim, "Real-Time Face Tracking System Using Adaptive Face Detector and Kalman Filter," LNCS 4552, Human-Computer Interaction, Part III, HCII 2007, pp. 669-678, 2007. 
    20. C.Y. Seong, B.D. Kang, J.H. Kim and S.K. Kim, "Effective Detector and Kalman Filter Based Robust Face Tracking System," LNCS 4319, Advances in Image and Video Technology, PSIVT'06, pp. 453-462, 2006. 
    21. J.H. Kim, J.W. Lee, B.D. Kang, O.H. Kwon, C.Y. Seong, S.K. Kim, and S .M. Park, "Hierarchical Classification of Object Images Using Neural Networks," LNCS 3972, International Symposium on Neural Networks, pp. 320-330, 2006. 
    22. B.D. Kang, J.H. Kim, C.Y. Seong, and S.K. Kim. "Effective Face Detection using a Small Quantity of Training Data," LNCS 4319, Advances in Image and Video Technology, PSIVT'06, pp. 553-562, 2006. 
    23. T. Cover, "Estimation by the nearest neighbor rule," IEEE Transactions on Information Theory, Vol.14, No.1, pp. 50-55, 1968. 
    24. M.C. Su, and C.H. Chou, "A modified version of the K-means algorithm with a distance based on cluster symmetry," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.23, No.6, pp 674-680, 2001. 
    25. M.S. Yang, K.L. Wu J,N. Hsieh, et al "Alpha-Cut Implemented Fuzzy Clustering Algorithms and Switching Regressions," IEEE Transactions on Systems, Man. and Cybernetics. Part B,, Vol.18, No.12, pp. 1117-1128, 1999. 
  • 이 논문을 인용한 문헌 (2)

    1. 2012. "" 멀티미디어학회논문지 = Journal of Korea Multimedia Society, 15(3): 312~322     
    2. Lee, Jae-Won ; Jung, Jee-Hoon ; Hong, Sung-Hoon 2012. "3D Multiple Objects Detection and Tracking on Accurate Depth Information for Pose Recognition" 멀티미디어학회논문지 = Journal of Korea Multimedia Society, 15(8): 963~976     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기