본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

한국세라믹학회지 = Journal of the Korean Ceramic Society v.47 no.4 = no.329, 2010년, pp.343 - 352   SCOPUS 피인용횟수: 2
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

폴리비닐 부티랄에 붙힌 지르코늄 알콕시드 졸을 사용한 전기방사에서 지르코니아 나노섬유 제조와 광발광
Photoluminescence and Fabrication of Zirconia Nanofibers from Electrospinning an Alkoxide Sol Templated on a Polyvinyl Butyral

고태경    (인하대학교 신소재공학부   ); 한규석    (인하대학교 신소재공학부   ); 임태균    (인하대학교 신소재공학부   ); 오성규    (인하대학교 신소재공학부   ); 한상환    (인하대학교 신소재공학부  );
  • 초록

    A zirconia gel/polymer hybrid nanofiber was produced in a nonwoven fabric mode by electrospinning a sol derived from hydrolysis of zirconium butoxide with a polyvinyl butyral. Results indicated that the hydroxyl groups on the vinyl alcohol units in the backbone of the polymer were involved in the hydrolysis as well as grafting the hydrolyzed zirconium butoxide. In addition, use of acetic acid as a catalyst resulted in further hydrolysis and condensation in the sol, which led to the growth of -Zr-O-Zr- networks among the polymer chains. These networks gradually transformed into a crystalline zirconia structure upon heating. The as-spun fiber was smooth but partially wrinkled on the surface. The average fiber diameter was $690{\pm}110\;nm$ . The fiber exhibited a strong but broad blue photoluminescence with its maximum intensity at a wavelength of ~410 nm at room temperature. When the fiber was heat-treated at $400^{\circ}C$ , the fiber diameter shrunk to $250{\pm}60\;nm$ . Nanocrystals which belonged to a tetragonal zirconia phase and were ~5 nm in size appeared. A strong white photoluminescence was observed in this fiber. This suggests that oxygen or carbon defects associated with the formation of the nanocrystals play a role in generating the photoluminescence. Further heating to $800^{\circ}C$ resulted in a monoclinic phase beginning to form In the heat-treated fibers, coloring occurred but varied depending on the heating temperature. Crystallization, coloring, and phase transition to the monoclinic structure influenced the photoluminescence. At $600^{\circ}C$ , the fiber appeared to be fully crystallized to a tetragonal zirconia phase.


  • 주제어

    Zirconia .   Electrospinning .   Sol-gel .   Nanofibers .   Photoluminescence.  

  • 참고문헌 (39)

    1. C. Shao, H. Guan, Y. Liu, J. Gong, N. Yu, and X. Yang, “A Novel Method for Making $ZrO_2$ Nanofibres via an Electrospinning Technique,” J. Cryst. Growth, 267 380-84 (2004). 
    2. A. Azad, “Fabrication of Yttria-Stabilized Zirconia Nanofibers by Electrospinning,” Mater. Lett., 60 62-72 (2006). 
    3. H. B. Zhang and M. J. Edirisinghe, “Electrospinning Zirconia Fiber From a Suspension,” J. Am. Ceram. Soc., 89 [6] 1870-75 (2006). 
    4. N. Dharmaraj, C. H. Kim, and H. Y. Kim, “Synthesis and Characterisation of Zirconium Oxide Nanofibers by Electrospinning,” Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 36 29-32 (2006). 
    5. L. Li, P. Zhang, J. Liang, and S. M. Guo, “Phase Transformation and Morphological Evolution of Electrospun Zirconia Nanofibers During Thermal Annealing,” Ceram. Int., 36 589-94 (2010). 
    6. J. G. Lu, P. Chang, and Z. Fan, “Quasi-One-Dimensional Metal Oxide Materials-Synthesis, Properties and Applications,” Mater. Sci. and Eng. R, 52 49-91 (2006). 
    7. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater., 15 [5] 353-89 (2003). 
    8. W. Sigmund, H. Yuh, H. Park, V. Maneeratana, G. Pyrgiotakis, A. Daga, J. Taylor, and J. C. Nino, “Processing and Structure Relationships in Electrospinning of Ceramic Fiber Systems,” J. Am. Ceram. Soc., 89 [2] 395-407 (2006). 
    9. R. H. J. Hannink, P. M. Kelly, and B. C. Muddle, “Transformation Toughening in Zirconia-Containing Ceramics,” J. Am. Ceram. Soc., 83 [3] 461-87 (2000). 
    10. K. Sayama and H. Arakawa, “Effect of Carbonate Addition on the Photocatalytic Decomposition of Liquid Water over a $ZrO_2$ Catalyst,” J. Photochem. Photobiol. A:Chem., 94 67-76 (1996). 
    11. M. Benammar, “Techniques for Measurement of Oxygen and Air-to-Fuel Ratio Using Zirconia Sensors. A review,” Meas. Sci. Technol., 5 757-67 (1994). 
    12. B. Zhu, “Solid Oxide Fuel Cell(SOFC) Technical Challenges and Solutions from Nano-Aspects,” Int. J. Energy Res., 33 1126-37 (2009). 
    13. J. Li, X. Jiao, and D. Chen, “Preparation of Zirconia Fibers via a Simple Aqueous Sol-Gel Method,” J. Disp. Sci. Tech., 28 531-35 (2007). 
    14. H. Cao, X. Qiu, B. Luo, Y. Liang, Y. Zhang, R. Tan, M. Zhao, and Q. Zhu, “Synthesis and Room-Temperature Ultraviolet Photoluminescence Properties of Zirconia Nanowires,” Adv. Funct. Mater., 14 [3] 243-46 (2004). 
    15. J. L. Gole, S. M. Prokes, J. D. Stout, O. J. Glembocki, and R. Yang, “Unique Properties of Selectively Formed Zirconia Nanostructures,” Adv. Mater., 18 664-67 (2006). 
    16. G. Yu, L. Zhu, X. Wang, H. Che, G. Zhang, Z. Sun, H. Fan, X. Liu, and D. Xu, “Fabrication of Zirconia Mesoporous Fibers by Using Polyorganozirconium Compound as Precursor,” Microporous and Mesoporous Mater., 119 230-36 (2009). 
    17. A. Emeline, G. V. Kataeva, A. S. Litke, A. V. Rudakova, V. K. Ryabchuk, and N. Serpone, “Spectroscopic and Photoluminescence Studies of a Wide Band Gap Insulating Material: Powdered and Colloidal $ZrO_2$ Sols,” Langmuir, 14 5011-22 (1998). 
    18. C. Lin, C. Zhang, and J. Lin, “Phase Transformation and Photoluminescence Properties of Nanocrystalline $ZrO_2$ Powders Prepared via the Pechini-type Sol-Gel Process,” J. Phys. Chem. C, 111 3300-7 (2007). 
    19. C. Zhang, C. Li, J. Yang, Z. Cheng, Z. Hou, Y. Fan, and J. Lin, “Tunable Luminescence in Monodisperse Zirconia Sphere,” Langmuir, 25 [12] 7078-83 (2009). 
    20. Y. Cong, B. Li, B. Lei, and W. Li, “Long Lasting Phosphorescent Properties of Ti Doped $ZrO_2$,” J. Lumin., 126 822-26 (2007). 
    21. K. Han and T. Ko, “Variation of Photoluminescence in Zirconia Gel by Pyrolysis(in Korean),” J. Kor. Ceram. Soc., 45 [2] 126-31 (2008).     
    22. C. Sanchez, L. Rozes, F. Ribot, C. Laberty-Robert, D. Grosso, C. Sassoye, C. Boissiere, and L. Nicole, “Chimie douce : A Land of Opportunities for the Designed Construction of Functional Inorganic and Hybrid Organic-Inorganic Nanomaterials,” C. R. Chimie., 13 3-39 (2010). 
    23. A. C. Pierre, “Introduction to Sol-Gel Processing,” pp. 55-70, Kluwer Academic Publishers, Nowell, Massachusetts, 1998. 
    24. A. K. Dhaliwal and J. N. Hay, “The Characterization of Polyvinyl Butyral by Thermal Analysis,” Thermochimica Acta, 391 245-55 (2002). 
    25. Y. Zhang, Y. Ding, J. Gao, and J. Yang, “Mullite Fibres Prepared by Sol-Gel Method Using Polyvinyl Butyral,” J. Euro. Ceram. Soc., 29 1101-7 (2009). 
    26. L. A. Salam, R. D. Matthews, and H. Robertson, “Pyrolysis of Polyvinyl Butyral(PVB) Binder in Thermoelectric Green Tapes,” J. Euro. Ceram. Soc., 20 1375-83 (2000). 
    27. M. J. Hyatt and N. P. Bansal, “Phase Transformations in Xerogels of Mullite Composition,” J. Mater. Sci., 25 2815-21 (1990). 
    28. D. Bhatia, M. Alam, and P.C. Sarkar, “Studies on Thermal Stress of Lac-Polyvinyl Butyral Resin Blends through Specular Reflectance Spectra,” Pigment & Resin Tech., 36 [6] 350-62 (2007). 
    29. H. Hayashi, H. Suzuki, and S. Kaneko, “Effect of Chemical Modification on Hydrolysis and Condensation Reaction of Zirconium Alkoxide,” J. Sol-Gel Sci. Tech., 12 87-94 (1998). 
    30. G. Socrates, “Infrared Characteristic Group Frequencies,” pp. 1-89, John Wiley & Sons, Hoboken, New Jersey, 1980. 
    31. S. Doeuff, M. Henry, C. Sanchez, and J. Livage, “Hydrolysis of Titanium Alkoxides: Modification of the Molecular Precursor by Acetic Acid,” J. Non-Cryst. Solids, 89 206-16 (1987). 
    32. R. Sui, J. M. H. Lo, and P. A. Charpentier, “Infrared and Computational Studies on Interactions of Carbon Dioxide and Titania Nanoparticles with Acetate Groups,” J. Phys. Chem. C, 113 21022-28 (2009). 
    33. R. Liu, B. He, and X. Chen, “Degradation of Poly(vinyl butyral) and Its Stabilization by Bases,” Polymer Degradation and Stability, 93 846-53 (2008). 
    34. E. F. Lopez, V. S. Escribano, M. Panizza, M. M. Carnasciali, and G. Busca, “Vibrational and Electronic Spectroscopic Properties of Zirconia Powders,” J. Mater. Chem., 11 1891-97 (2001). 
    35. G. Ramis, G. Busca, and V. Lorenzelli, “Low-Temperature $CO_2$ Adsorption on Metal Oxides: Spectroscopic Characterization of Some Weakly Adsorbed Species,” Mater. Chem. Phys., 29 425-35 (1991). 
    36. K. Pokrovki, K. T. Jung, and A. T. Bell, “Investigation of CO and $CO_2$ Adsorption on Tetragonal and Monoclinic Zirconia,” Langmuir, 17 4297-303 (2001). 
    37. M. D. Lu and S. M. Yang, “Synthesis of Poly(3-hexylthiophene) Grafted $TiO_2$ Nanotube Composite,” J. Colliod Interface Sci., 333 128-34 (2009). 
    38. M. I. Osendi, J. S. Moya, C. J. Serna, and J. Soria, “Metastability of Tetragonal Zirconia Powders,” J. Am. Ceram. Soc., 68 [3] 135-39 (1985). 
    39. A. K. Deb, P. Chatterjee, and S. P. S. Gupta, “Structural Investigation of Tetragonally Stabilized $ZrO_2$ in ${\aplha}-Al_{2}O_{3}-ZrO_{2}$ Composites,” J. Appl. Cryst., 39 601-3 (2006). 
  • 이 논문을 인용한 문헌 (2)

    1. Yang, Jee-Woo ; Yoo, Jae Jung ; Jang, Hae Jin ; Yong, Da Kyung ; Won, Jong Sung ; Lee, Seung Goo 2012. "Preparation and Characterization of PAN Based Carbon Fibers Having Zirconia Nanofibers" 韓國纖維工學會誌 = Textile science and engineering, 49(5): 307~313     
    2. Seo, Eui-Young ; Choi, Se-Kyeong ; Shin, Ik-Soo ; Kang, Wee-Kyung 2013. "Fabrication and Characterization Nano Porous Anodic ZrO2 Membranes by Two-Step Anodizing" 대한화학회지 = Journal of the Korean Chemical Society, 57(5): 547~553     

 저자의 다른 논문

  • 고태경 (12)

    1. 1993 "촉매제에 의한 BaTi-에톡사이드 솔의 옥소폴리머 변화에 대한 저각 X선 산란연구" 한국결정학회지 = Korean journal of crystallography 4 (1): 36~41    
    2. 1994 "솔-젤 회전 코팅법을 이용한 강유전성 $BaTiO_3$ 박막제조" 요업학회지 = Journal of the Korean Ceramic Society 31 (7): 795~803    
    3. 1995 "희토류원소(Y, Nd, Sm, Gd)의 치환에 의한 $Bi_4Ti_3O_{12}$의 결정화학 및 유전물성" 요업학회지 = Journal of the Korean Ceramic Society 32 (10): 1178~1188    
    4. 1996 "전장하에서 PLZTd의 반강유전-강유전 상전이의 동시적 X-선 회절 측정" 요업학회지 = Journal of the Korean Ceramic Society 33 (11): 1292~1300    
    5. 1998 "세라믹 엑튜에이터 응용을 위한 Sn 치환의 PLZT(7.5/70/30)의 변형특성" 요업학회지 = Journal of the Korean Ceramic Society 35 (5): 512~520    
    6. 1998 "$Bi_4Ti_3O_{12}{\cdot}nBaTiO_3(n=1&2)$ 박막에서 $Bi_4Ti_3O_{12}$ 에 대한 $BaTiO_3$의 복합효과" 요업학회지 = Journal of the Korean Ceramic Society 35 (11): 1130~1140    
    7. 1999 "A Combined Rietveld Refinement on the Crystal Structure of a Magnetoelectric Aurivillius Phase $Bi_5Ti_3FeO_{15}$ Using Neutron and X-ray Powder Diffractions" The Korean journal of ceramics 5 (4): 341~347    
    8. 2001 "$Bi_4$$Ti_3$$O_{12}$ 박막에서 Bi-O 결합과 전기 물성에 대한 Ta 치환의 영향" 한국세라믹학회지 = Journal of the Korean Ceramic Society 38 (6): 558~567    
    9. 2004 "허니컴에 코팅한 마그네타이트의 미세구조 및 CO2 분해특성" 한국세라믹학회지 = Journal of the Korean Ceramic Society 41 (5): 410~416    
    10. 2006 "Preparation and Characteristics of the Ni-Ferrite Encapsulated Mo-Permalloy Powder" 한국세라믹학회지 = Journal of the Korean Ceramic Society 43 (11): 700~702    
  • 한규석 (2)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기