본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of mechanical science and technology v.24 no.8, 2010년, pp.1709 - 1716   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

A joint adaptive wavelet filter and morphological signal processing method for weak mechanical impulse extraction

He, Wei    (Diagnosis and Self-recovery Engineering Research Center, Beijing University of Chemical Technology   ); Jiang, Zhinong    (Diagnosis and Self-recovery Engineering Research Center, Beijing University of Chemical Technology   ); Qin, Qiang    (Diagnosis and Self-recovery Engineering Research Center, Beijing University of Chemical Technology  );
  • 초록

    Periodical impulses are vital indicators of rotating machinery faults. Therefore, the extraction of weak periodical impulses from vibration signals is of great importance for incipient fault detection. However, measured signals are often severely tainted by various noises, which makes the detection of impulses rather difficult. As such, a proper signal processing technique is necessary. In this paper, a hybrid method comprised of wavelet filter and morphological signal processing (MSP) is proposed for this task. The wavelet filter is used to eliminate the noise and enhance the impulsive features. Then, the filtered signal is processed by the morphological closing operator and a local maximum algorithm to isolate periodical impulses. To select the proper parameters of the joint approach, i.e., the center frequency, the bandwidth of wavelet filter, and the length of flat structuring elements (SE), a novel optimization algorithm based on differential evolution (DE) is developed. The results of simulated experiments and bearing vibration signal analysis verify the effectiveness of the proposed method.


  • 주제어

    Morphological signal processing .   Wavelet filter .   Differential evolution .   Impulse extraction .   Fault diagnostics.  

  • 참고문헌 (29)

    1. P. McFadden and J. Smith, Model for the vibration produced by a single point defect in a rolling element bearing, Journal of Sound and Vibration, 96 (1) (1984) 69-82. 
    2. H. Qiu, et al., Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics, Journal of Sound and Vibration, 289 (4-5) (2006) 1066-1090. 
    3. J. Lin, et al., Mechanical fault detection based on the wavelet de-noising technique, Journal of Vibration and Acoustics, Transactions of the ASME, 126 (1) (2004) 9-16. 
    4. W. Yang and X. Ren, Detecting Impulses in Mechanical Signals by Wavelets, EURASIP Journal on Applied Signal Processing, (2004) 1156-1162. 
    5. N. G. Nlkolaou and I. A. Antoniadis, Application of morphological operators as envelope extractors for impulsivetype periodic signals, Mechanical Systems and Signal Processing, 17 (6) (2003) 1147-1162. 
    6. J. Wang, et al., Application of improved morphologica1 filter to the extraction of impulsive attenuation signals, Mechanical Systems and Signal Processing, 23 (1) (2009) 236-245. 
    7. T. I. Patargias, et al., Perfonnance assessment of a morphological index in fault prediction and trending of defective rolling element bearings, Nondestructive Testing and Evaluation, 21 (1) (2006) 39-60. 
    8. L. Zhang, et al., Approach to extracting gear fault feature based on mathematical morphological filtering, Chinese Journal of Mechanical Engineering, 43 (2) (2007) 71-75. 
    9. R. Hao and F. Chu, Morphological undecimated wavelet decomposition for fault diagnostics of rolling element bearings, Journal of Sound and Vibration, 320 (4-5) (2009)1164-1177. 
    10. P. Maragos and R. Schafer, Morphological filters--Part I: Their set-theoretic analysis and relations to linear shiftinvariant filters, IEEE Transactions on Acoustics. Speech and Signal Processing, 35 (8) (1987) 1153-1169. 
    11. J. Serra, Image analysis and mathematical morphology, Academic Press, Inc. Orlando, FL, USA, (1983). 
    12. J. Serra, Morphological filtering: an overview, Signal Processing, 38 (1) (1994) 3.11. 
    13. G. Y. Luo, et aI., Real-time condition monitoring by significant and natural frequencies analysis of vibration signal with wavelet filter and autocorrelation enhancement, Journal of Sound and Vibration, 236 (3) (2000) 413-430. 
    14. W. He, et aI., Bearing fault detection based on optimal wavelet filter and sparse code shrinkage, Measurement, 42(7)(2009) 1092-1102. 
    15. J. Lin and M. J. Zuo, Gearbox fault diagnosis using adaptive wavelet filter, Mechanical Systems and Signal Processing, 17 (6) (2003) 1259-1269. 
    16. I. S. Bozchalooi and M. Liang, A joint resonance frequency estimation and in-band noise reduction method for enhancing the detectability of bearing fault signals, Mechanical Systems and Signal Processing, 22 (4) (2008) 915-933. 
    17. N. Karaboga, Digital IIR Filter Design Using Differential Evolution Algorithm, EURASIP Journal on Applied Signal Processing, 8 (2005) 1269-1276. 
    18. K. V. Price, et al., Differential Evolution: A Practical Approach to Global Optimization, Springer-Verlag, Berlin,Germany (2005). 
    19. P. Kaelo and M. M. Ali, A numerical study of some modified differential evolution algoritlmls, European Journal of Operational Research, 169 (3) (2006) 1176-1184. 
    20. N. Yigit and N. Karaboga, Noise Cancellation In Adaptive Filters With Diffrential Evolution Algorithm, Signal Processing and Communications Applications, 2007, SIU 2007, IEEE 15th (2007) 1-4. 
    21. S, G. Mallat, A Wavelet Tour of Signal Processing, Second Ed. Academic Press, San Diego, USA (1999). 
    22. J. Liu, et al., An extended wavelet spectrum for bearing fault diagnostics, IEEE Transactions on Instrumentation and Measurement, 57 (12) (2008) 2801-2812. 
    23. M. Mitchell, An introduction to genetic algorithms, The MIT press, Cambridge, USA (1998). 
    24. S, Kirkpatrick, Optimization by simulated annealing: Quantitative studies, Journal of Statistical Physics, 34 (5) (1984) 975-986. 
    25. M. Dorigo, et al., Ant colony optimization, IEEE Computational Intelligence Magazine, 1 (4) (2006) 28-39. 
    26. N. Karaboga and B. Cetinkaya, Performance comparison of genetic and differential evolution algorithms for digital FIR filter design, Advances in Information Systems: Third International Conference, Turkey (2004) 482-488. 
    27. K. A. Loparo, Bearings vibration data set, Case Western Reserve University  
    28. L. Zhang et al., Multiscale morphology analysis and its application to fault diagnosis, Mechanical Systems and Signal Processing, 22(3) (2008) 597-610. 
    29. R. Storn and K. Price, Differential Evolution-A Simple and Efficient Heuristic for global Optimization over Continuous Spaces, Journal of Global Optimization, 11 (4) (1997) 341-359. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기