본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Macromolecular research v.18 no.6, 2010년, pp.571 - 576   SCI SCIE 피인용횟수: 1
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Controlled Wall Thickness and Porosity of Polymeric Hollow Nanofibers by Coaxial Electrospinning

Lee, Ga-Hyoung    (Department of Polymer Science, Kyungpook National University   ); Song, Jun-Cheol    (Department of Polymer Science, Kyungpook National University   ); Yoon, Keun-Byoung    (Department of Polymer Science, Kyungpook National University  );
  • 초록

    Highly porous polymeric hollow nanofibers were developed using a method based on coaxial electrospinning with inner silicon oil and outer polymer solutions. This method was verified by the fabrication of polymeric hollow fibers, whose diameter and wall thickness could be varied by controlling the coelectrospinning parameters, such as the dielectric constant of the solvents, concentration of the polymer solution, molecular weights of the polymers and viscosity of the inner silicon oil phase. The entire diameter and wall thickness of the hollow fibers could be varied from 5 to 15 ${\mu}m$ and 180 to 900 nm, respectively. Highly porous polymeric hollow nanofibers were fabricated by coaxial electrospinning with a highly volatile solvent. The interior surface was quite smooth without pores. Therefore, pore formation occurred at the outer surface of the hollow fibers due to rapid solvent evaporation because the jet only occurred between the surface of the polymer solution and air. The smooth interior and highly porous outer surface, circular crosssection and uniform size of the hollow polymer nanofibers are expected to have attractive applications in areas, such as catalysis, optoelectronics, nanofluidics, drug delivery or biosensorics.


  • 주제어

    hollow nanofiber .   coaxial electrospinning .   porous nanofiber.  

  • 참고문헌 (25)

    1. D. Li and Y. Xia, Adv. Mater., 14, 1151 (2004). 
    2. A. Frenot and I. S. Chroneker, Curr. Opin. Colloid Interface Sci., 8, 64 (2003). 
    3. J. Doshi and D. H. Reneker, J. Electrost., 35, 151 (1995). 
    4. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science, 297, 787 (2002). 
    5. L. Hueso and N. Mathur, Nature, 427, 301 (2004). 
    6. C. R. Martin and P. Kohli, Nature Rev. Drug Discov., 2, 29 (2003). 
    7. J. T. McCann, D. Li, and Y. Xia, J. Mater. Chem., 15, 735 (2005). 
    8. M. Bognitzki, Z. Jia, A. K. Schaper, R. B. Wehrspohn, U. Gosele, and J. H. Wendorff, Adv. Mater., 12, 637 (2000). 
    9. R. A. Caruso, J. H. Schattka, and A. Greiner, Adv. Mater., 13, 1577 (2001). 
    10. Z. Sun, E. Zussman, A. L. Yarin, J. H. wendorff, and A. Greiner, Adv. Mater., 15, 1929 (2003). 
    11. J. H. Yu, S. V. Fridrikh, and G. C. Rutledge, Adv. Mater., 16, 1562 (2004). 
    12. I. G. Locertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Ganan-Calvo, Science, 295, 1154 (2002). 
    13. D. Li and Y. Xia, Nano Lett., 4, 933 (2004). 
    14. J. Liu, A. Rasheed, H. Dong, W. W. Carr, M. D. Dadmun, and S. Kumar, Macromol. Chem. Phys., 209, 2390 (2008). 
    15. H. Dong, V. Nyame, A. G. MacDiarmid, and W. E. Jones, Jr., J. Polym. Sci., Polym. Phys. Ed., 42, 3934 (2004). 
    16. G. Kwak, G. H. Lee, S. H. Shim, and K. B. Yoon, Macromol. Rapid Commun., 29, 815 (2008). 
    17. D. H. Reneker and I. Chun, Nanotechnology, 7, 216 (1996). 
    18. P. Gupta, C. Elkins, T. E. Long, and G. L. Wilkes, Polymer, 46, 4799 (2005). 
    19. A. L. Yarin, S. Koombhongse, and D. H. Reneker, J. Appl. Phys., 90, 4836 (2001). 
    20. S. Megelski, J. S. Stephenes, D. B. Chase, and J. F. Rabolt, Macromolecules, 35, 8456 (2002). 
    21. M. Srinivasarao, D. Collings, A. Phillips, and S. Patel, Science, 292, 79 (2001). 
    22. H. Matsuyama, M. Teramoto, R. Nakatani, and T. Maki, J. Appl. Polym. Sci., 74, 171 (1999). 
    23. G. Larsen, R. Velarde-Ortiz, K. Minchow, A. Barrero, and I. G. Loscertales, J. Am. Chem. Soc., 125, 1154 (2003). 
    24. Y. Z. Zhang, Z. M. Huang, X. J. Xu, C. T. Lim, and S. Ramakrishna, Chem. Mater., 16, 3406 (2004). 
    25. C. L. Casper, J. S. Stephenes, N. G. Tassi, D. B. Chase, and J. F. Rabolt, Macromolecules, 37, 573 (2004). 
  • 이 논문을 인용한 문헌 (1)

    1. 2011. "" Macromolecular research, 19(8): 815~821     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기