본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Food science and biotechnology v.19 no.3, 2010년, pp.763 - 768   SCIE 피인용횟수: 4
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Mathematical Modeling on the Growth of Staphylococcus aureus in Sandwich

Ding, Tian    (Department of Food Science and Biotechnology and Institute of Bioscience and Biotechnology, Kangwon National University   ); Shim, Young-Hwan    (Department of Food Science and Biotechnology and Institute of Bioscience and Biotechnology, Kangwon National University   ); Choi, Na-Jung    (Department of Food Science and Biotechnology and Institute of Bioscience and Biotechnology, Kangwon National University   ); Ha, Sang-Do    (Department of Food Science and Technology, Chung-Ang University   ); Chung, Myung-Sub    (Department of Food and Drug Industry, Korea Health Industry Development Institute   ); Hwang, In-Gyun    (Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, Korea Food & Drug Administration   ); Oh, Deog-Hwan    (Department of Food Science and Biotechnology and Institute of Bioscience and Biotechnology, Kangwon National University  );
  • 초록

    The growth of Staphylococcus aureus in sandwich fillings at different incubation temperatures was tested. These growth data were fitted into the Gompertz model, Logistic model, and Baranyi model in order to compare the goodness-of-fit of the 3 primary models using several factors such as coefficient of determination ( $R^2$ ), the standard deviation ( $S_{y.x}$ ), and the Akaike's information criterion (AIC). The Gompertz model showed the best statistical fit. Hence, growth parameters such as specific growth rate (SGR) and lag time (LT) obtained from the Gompertz model were used to construct the secondary models. Further, developed models were evaluated by bias factor ( $B_f$ ) and accuracy factor ( $A_f$ ). For the SGR, the $B_f$ value was 0.993 and $A_f$ value was 1.156 which indicated conservative predictions. While for LT, a clear deviation was observed between predictions and observations ( $B_f$ =0.63 0.635 and $A_f$ =1.59 1.592). The results, however, were also considered acceptable after comparing with previous publications.


  • 주제어

    Staphylococcus aureus .   primary model .   secondary model .   sandwich .   evaluation.  

  • 참고문헌 (31)

    1. Krishnamurthy K, Tewari JC, Irudayaraj J, Demirci A. Microscopic and spectroscopic evaluation of inactivation of Staphylococcus aureus by pulsed UV light and infrared heating. Food Bioprocess Tech. 3: 93-104 (2010) 
    2. Mead PS, Slutsker L, Dietz V, McCraig LF, Bresee JS, Shapiro C. Food-related illness and death in the United States. Emerg. Infect. Dis. 5: 607-625 (1999) 
    3. CFSAN (Center for Food Safety and Applied Nutrition), US Food and Drug Administration. Staphylococcus aureus (1992). In: Foodborne Pathogenic Microorganisms and Natural Toxins Handbook. Rockville, MD: Center for Food Safety and Applied Nutrition, US Food and Drug Administration Available at: http:// www. cfsan.fda.gov/~mow/chap3.html. Accessed Nov. 5, 2007. 
    4. Ding T, Rahman SME, Purev U, Oh DH. Modelling of Escherichia coli O157:H7 growth at various storage temperatures on beef treated with electrolyzed oxidizing water. J. Food Eng. 97: 497-503 (2010) 
    5. McDonald K, Sun DW. Predictive food microbiology for the meat industry: A review. Int. J. Food Microbiol. 52: 1-27 (1999) 
    6. Ding T, Jin YG, Rahman SME, Kim JM, Choi KH, Choi GS, Oh DH. Prediction of growth of Escherichia coli O157:H7 in lettuce treated with alkaline electrolyzed water at different temperatures. J. Food Hyg. Saf. 24: 232-237 (2009)     
    7. Ding T, Jin YG, Oh DH. Predictive model for growth of Listeria monocytogenes in untreated and treated lettuce with alkaline electrolyzed water. World J. Microb. Biot. 26: 863-869 (2010) 
    8. Rowe MT. Predictive microbiology: Uses for assessing quality and safety of dairy products. J. Ind. Microbiol. Biot. 12: 330-336 (1993) 
    9. Bang WS, Chung HJ, Jin SS, Ding T, Hwang IG, Woo GJ, Ha SD, Bahk GJ, Oh DH. Prediction of Listeria monocytogenes growth kinetics in sausages formulated with antimicrobials as a function of temperature and concentrations. Food Sci. Biotechnol. 17: 1316-1321 (2008)     
    10. Han BZ, Li M, Zhang L, Zhang N. Predictive food microbiology and food quality and safety. China Brewing 9: 1-3 (2005) 
    11. Whiting RC. Microbial modeling in foods. Crit. Rev. Food Sci. 35: 467-494 (1995) 
    12. Juneja VK, Melendres MV, Huang L, Gumudavelli V, Subbiah J, Thippareddi H. Modeling the effect of temperature on growth of Salmonella in chicken. Food Microbiol. 24: 328-335 (2007) 
    13. Ding T, Dong QL, Jin YG, Oh DH. Study on predictive model of the growth of Listeria monocytogenes in ready-to-eat lettuce treated with electrolyzed oxidizing water. Sci. Technol. Food Ind. 31: 87-90 (2010) 
    14. Zhou K, Fu P, Li PL, Cheng WP, Liang ZH. Predictive modeling and validation of growth at different temperatures of Brochothrix thermosphacta. J. Food Safety 29: 460-473 (2009) 
    15. Grau FH, Vanderlinde PB. Aerobic growth of Listeria monocytogenes on beef lean and fatty tissue: Equations describing the effects of temperature and pH. J. Food Protect. 56: 96-101 (1993) 
    16. Akaike H. A new look at the statistical model identification. IEEE T. Automat. Contr. 19: 716-723 (1974) 
    17. Dalgaard P, Jorgensen LV. Predicted and observed growth of Listeria monocytogenes in seafood challenge tests and in naturally contaminated cold-smoked salmon. Int. J. Food Microbiol. 40: 105-115 (1998) 
    18. Baranyi J, Roberts TA. A dynamic approach to predicting bacterial growth in foods. Int. J. Food Microbiol. 23: 277-294 (1994) 
    19. Pin C, Sutherland JP, Baranyi J. Validating predictive models of food spoilage organisms. J. Appl. Microbiol. 87: 491-499 (1999) 
    20. Te Giffel MC, Zwietering MH. Validation of predictive models describing the growth of Listeria monocytogenes. Int. J. Food Microbiol. 46: 135-149 (1999) 
    21. Jin SS, Jin YG, Yoon KS, Woo GJ, Hwang IG, Bahk GJ, Oh DH. Predictive modeling of the growth and survival of Listeria monocytogenes using a response surface model. Food Sci. Biotechnol. 15: 715-720 (2006)     
    22. Dong QL, Tu K, Guo LY, Li HW, Zhao Y. Response surface model for prediction of growth parameters from spores of Clostridium sporogenes under different experimental conditions. Food Microbiol. 24: 624-632 (2007) 
    23. Baert K, Valero A, Meulenaer BD, Samapundo S, Ahmed MM, Bo L, Debevere J, Devlieghere F. Modeling the effect of temperature on the growth rate and lag phase of Penicillium expansum in apples. Int. J. Food Microbiol. 118: 139-150 (2007) 
    24. Armas AD, Wynne A, Sutherland JP. Validation of predictive models using independently published data. In: Abstracts: 2nd International Conference on Predictive Microbiology. February 18- 22, Hobart, Tasmania, Australia (1996) 
    25. Ross T. Predictive Food Microbiology Models in the Meat Industry. Meat and Livestock Australia, Sydney, Australia. p. 196 (1999) 
    26. Ross T. Indices for performance evaluation of predictive models in food microbiology. J. Appl. Bacteriol. 81: 501-508 (1996) 
    27. Ross T, Dalgaard P, Tienungoon S. Predictive modelling of the growth and survival of Listeria in fishery products. Int. J. Food Microbiol. 62: 231-245 (2000) 
    28. Miwa N, Kawamura A, Masuda T, Akiyama M. An outbreak of food poisoning due to egg yolk reaction-negative Staphylococcus aureus. Int. J. Food Microbiol. 64: 361-366 (2001) 
    29. Duffy LL, Vanderlinde PB, Grau FH. Growth of Listeria monocytogenes on vacuum-packed cooked meats: Effects of pH, Aw, nitrite, and ascorbate. Int. J. Food Microbiol. 23: 377-390 (1994) 
    30. Patterson MF, Damoglou AP, Buick RK. Effects of irradiation dose and storage temperature on the growth of Listeria monocytogenes on poultry meat. Food Microbiol. 10: 197-203 (1993) 
    31. Neumeyer K, Ross T, Thomson G, McMeekin TA. Validation of a model describing the effects of temperature and water activity on the growth of psychrotrophic pseudomonads. Int. J. Food Microbiol. 38: 55-63 (1997) 
  • 이 논문을 인용한 문헌 (4)

    1. 2011. "" Food science and biotechnology, 20(2): 471~476     
    2. 2011. "" Food science and biotechnology, 20(5): 1367~1371     
    3. 2011. "" Food science and biotechnology, 20(6): 1593~1597     
    4. 2015. "" Journal of the Korean Society for Applied Biological Chemistry, 58(5): 693~701   

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기