본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of mechanical science and technology v.24 no.6, 2010년, pp.1265 - 1271   SCIE 피인용횟수: 2
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

The effect of change in width on stress distribution along the curved segments of stents

Jang, Kyung-Soon    (School of Mechanical Engineering, KookMin University   ); Kang, Tae-Won    (School of Mechanical Engineering, KookMin University   ); Lee, Kee-Sung    (School of Mechanical Engineering, KookMin University   ); Kim, Chul    (School of Mechanical Engineering, KookMin University   ); Kim, Tae-Woo    (School of Mechanical Engineering, KookMin University  );
  • 초록

    Curved structural members are widely seen in our surroundings, such as railway supports in playgrounds resembling a c-ring structure. The common geometry of the curved member consists of a segment of a circular ring with a uniform width. The curved section is of constant width in most cardiovascular stents. This study focuses on curved strut members whose width changes along the curved segment. The location of the maximum equivalent stress varies depending on the manner in which the width changes. When the width is constant or larger toward the top, the maximum equivalent stress is developed at the top. Meanwhile, when the area is reduced toward the bottom, the largest equivalent stress is developed some distance from the top. Simple equations, based on the mechanics of materials and the theory of elasticity, were compared favorably with the results from finite element analysis. Included are elaborations of the distribution of the change of stress. The suggested strategy of changing the width, with refinements, could be applied to the optimal design of structural members, including pipes and medical devices such as stents.


  • 주제어

    Beam .   Finite element analysis .   Optimal design .   Stress.  

  • 참고문헌 (22)

    1. M. F. Ashby and D. R. H. Jones, Engineering Materials, 3rd Ed. Elsevier, (2005). 
    2. J. E. Shigley, C. R. Mischke and R. G. Budynas, Mechanical Engineering Design, 7th ed. McGrawHill, 2003,155-156. 
    3. M. F. Ashby, Materials Selection in Mechanical Design. 3rd Ed. Elsevier, (2005). 
    4. J. S. Arora, Introduction to optimum design, 2nd Ed. Elsevier, (2004). 
    5. B. Y. Kim, C. Kim, S. G. Song, H. G. Beom and C. Cho, A finite thin circular beam element for out-of-plane vibration analysis of curved beams, Journal of Mechanical Science and Technology, 23 (2009) 1396-1405.     
    6. N. Kim and D. K. Shin, A series solution for spatially coupled deflection analysis of thin-walled Timoshenko curved beam with and without elastic foundation, Journal of Mechanical Science and Technology, 23 (2009) 475-488.     
    7. M. T. Piovan and V. H. Cortinez. Linear viscoelastic analysis of straight and curved thin-walled laminated composite beams. International Journal of Solids and Structures, (2008) 45, 15,3466-3493. 
    8. M. Altinok, E. Burdurlu and K. Ozkaya, Deformation analysis of curved laminated structural wood elements. Construction and Building Materials, 22 (2008) 1643-1647. 
    9. A. Colombo, G. Stankovic and J.W: Moses, Selection of coronary stents. J. of the American College of Cardiology, (2002),40,6,1021-1033. 
    10. L. Petrini, F. Migliavacca, F. Auricchio and G. Dubini, Numerical investigation of the intravascular coronary stent flexibility. J. of Biomechanics, (2004),37,495-501. 
    11. F. Migliavacca, L. Petrini, V. Montanari, I. Quagliana, F. Auricchio and G. Dubini, A predictive study of the mechanical behavior of coronary stents by computer modeling. Medical Engineering and Physics, (2005),27,13-18. 
    12. S. Wiersma and D. Taylor, Fatigue of materials used in microscopic components. Fatigue & Fracture of Engineering Materials & Structures, (2005,28,1153-1160. 
    13. R. C. Hibbeler, Mechanics of Materials, (1997), 328-337, Prentice-Hall, 3nd ed. 
    14. W. Wu, D. Z. Yang, M. Qi and W. Q. Wang, An FEA method to study flexibility of expanded coronary stents. J. of Materials Processing Technology, (2007),184,447-450. 
    15. Y. P. Kathuria, The potential of biocompatible metallic stents and preventing restenosis. Materials Science and Engineering A, (2006),417,40-48. 
    16. J. R. Barber. Elasticity. 2nd. Kluwer Academic Publishers, (2002),126-127. 
    17. J. L. Meriam, Engineering Mechanics, Statics, Wiley, (1978),382. 
    18. A. K. Mal and S. J. Singh, Deformation of elastic solids, Prentice-hall (1991),191-210. 
    19. R. G. Budynas, Advanced Strength and Applied Stress Analysis, McGrawHill, (1999), 2nd, 309. 
    20. ABAQUS user's manual, Simulia, (2008). 
    21. F. Etave, G. Finet, M. Boivin, J. Boyer, G. Rioufol and G. Thollet, Mechanical properties of coronary stents determined by using finite element analysis J. of Biomechanics, (2001), 34,1065-1075. 
    22. K. Takashima, T. Kitou, K. Mori and K. Ikeuchi, Simulation and experimental observation of contact conditions between stents and artery models. Medical Engineering & Physics, (2007), 29, 326-335. 
  • 이 논문을 인용한 문헌 (2)

    1. 2012. "" Structural engineering and mechanics : An international journal, 42(2): 131~152   
    2. 2012. "" International journal of precision engineering and manufacturing, 13(3): 413~419     

 저자의 다른 논문

  • Jang, Kyung-Soon (2)

    1. 2007 "반도체 웨이퍼 다이싱용 나노 복합재료 블레이드의 제작" 복합재료 : 한국복합재료학회지 = Journal of the Korean Society for Composite Materials 20 (5): 49~55    
    2. 2008 "압입접촉하중이 작용하는 섬유강화 복합재료의 응력해석" 한국세라믹학회지 = Journal of the Korean Ceramic Society 45 (4): 238~244    
  • Kang, Tae-Won (6)

  • 이기성 (16)

  • Kim, Tae-Woo (18)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기