본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Molecular & cellular toxicology v.6 no.2, 2010년, pp.119 - 125   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Cytotoxicity and genotoxicity of nano-silver in mammalian cell lines

Kim, Youn-Jung    (Department of Applied Chemistry, Kyung Hee University   ); Yang, Sung-Ik    (Department of Applied Chemistry, Kyung Hee University   ); Ryu, Jae-Chun    (Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology  );
  • 초록

    Nano-silver (Ag) with antimicrobial activity is by far the most commercialized nano-compound. The hazards associated with human exposure to nano-sized-silver should be investigated to facilitate the risk assessment process. Recent studies have shown that inflammatory, oxidative, genotoxic, and cytotoxic consequences are associated with silver particulate exposure, and are inherently linked. In the present study, the cytotoxicity and genotoxicity of nano-silver were investigated using the dye exclusion assay, the comet assay, and the mouse lymphoma thymidine kinase ( $tk^{+/-}$ ) gene mutation assay (MLA). $IC_{20}$ values of nano-silver in L5178Y cells were determined the concentration of $3,769.53\;{\mu}g/mL$ and $1,796.88\;{\mu}g/mL$ with and without S-9, respectively. And in BEAS-2B cell, $IC_{20}$ values were calculated to $1,171.88\;{\mu}g/mL$ and $761.72\;{\mu}g/mL$ with and without S-9, respectively. From these results, nano-silver was more cytotoxic in absence of S-9 metabolic activation system and at the BEAS-2B cells. In the comet assay, L5178Y cells and BEAS-2B cells were treated with nano-silver which significantly increased > 2-fold tail moment with and without S-9. However, the mutant frequencies in the nano-silver treated L5178Y cells were slightly increased but not significant compared to the vehicle controls with and without S-9. The results of this study indicate that nano-silver can cause primary DNA damage and cytotoxicity but not mutagenicity in cultured mammalian cells.


  • 주제어

    Nano-silver .   Cytotoxicity .   Comet assay .   Gene mutation assay (MLA) .   L5178Y cell .   BEAS-2B cell.  

  • 참고문헌 (31)

    1. Dey, S. et al. Interactions between SIRT1 and AP-1 reveal a mechanistic insight into the growth promoting properties of alumina ($Al_2O_3$) nanoparticles in mouse skin epithelial cells. Carcinogenesis 29:1920-1929 (2008). 
    2. Balasubramanyam, A. et al. In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test. Mutagenesis 24:245-251 (2009). 
    3. Colvin, V. L. The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166-1170(2003). 
    4. Wijnhoven, S. W. P. et al. Nano-silver-a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109-138 (2009). 
    5. Melaiye, A. et al. Silver(I)-imidazole cyclophane gemdiol complexes encapsulated by electrospun tecophilic nanoWbers: formation of nanosilver particles and antimicrobial activity. J Am Chem Soc 127:2285-2291 (2005). 
    6. Lubick, N. Nanosilver toxicity: ions, nanoparticles-or both? Environ Sci Technol 42:8617 (2008). 
    7. Foldbjerg, R. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190:156-162(2009). 
    8. AshaRani, P. V., Mun, G. L. K., Hande, M. P. & Valiyaveettil, S. Cytotoxicity and genotoxicity of siver nanoparticles in human cells. ACS Nano 3 :279-290 (2009). 
    9. Singh, N. P. et al. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184-191(1988). 
    10. Anderson, D. & Plewa, M. J. The international comet assay workshop. Mutagenesis 13: 67-73 (1998). 
    11. Fairbairn, D. W., Walburger, D. K., Fairbairn, J. J. & O'Neill, K. L. Key morphologic changes and DNA strand breaks in human lymphoid cells: discriminating apoptosis from necrosis. Scanning 18:407-416 (1996). 
    12. Speit, G. & Hartmann, A. The comet assay (single-cell gel test). A sensitive genotoxicity test for the detection of DNA damage and repair. Methods Mol Biol 113: 203-212 (1999). 
    13. Lok, C. N. et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5: 916-924 (2006). 
    14. ATSDR (Agency for toxic substances and Disease Registry) Toxicological profile for Silver. Prepared by Clement international corporation, under Contract 205-88-0608). U.S. public Health Service. ATSDR/TP 90-24(1990). 
    15. Hussain, S. M. et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975-983 (2005). 
    16. Braydich-Stolle, L., Hussain, S., Schlager, J. J. & Hofmann, M. C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412-419 (2005). 
    17. Carlson, C. et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608-13619 (2008). 
    18. Arora, S., Jain, J., Rajwade, J. M. & Paknikar, K. M. Cellular responses induced by silver nanoparticles: in 125 vitro studies. Toxicol Lett 179:93-100 (2008). 
    19. Foldbjerg, R, Dang, D. A. & Autrup, H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol Epub ahead of print (2010). 
    20. Kumari, M., Mukherjee, A. & Chandrasekaran, N. Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ. 407:5243-5246 (2009). 
    21. Kuriyama, R & Sakai, H. Role of tubulin-SH group in polymerization to microtubules. J Biochem 76: 651-654 (1974). 
    22. Klasterska, I., Natarajan, A. T. & Ramel, C. An interpretation of the origin of subchromatid aberrations and chromosome stickiness as a category of chromatid aberrations. Hereditas 83: 153-162 (1976). 
    23. Lesniak, W. et al. Silver/Dendrimer nanocomposites as biomarkers: fabrication, characterization in vitro toxicity, and intracellular detection. Nano Lett 5:2123-2130 (2005). 
    24. Sung, J. H. et al. Lung function changes in spraguedawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 20:567-574 (2008). 
    25. Clements, J. Gene mutation assay in mammalian cells, In O'Hare, S. & Atterwill, C. K. (Ed.), Methods in Molecular Biology, Vol. 43, In vitro Toxicity Testing Protocols. Humana Press Inc. Totowa, NJ. 43:277-286 (1990). 
    26. Robinson, W. D. et al. Statistical evaluation of bacterial/mammalian fluctuation test, in Statistical Evaluation of Mutagenicity Test Data (Kirkland, D. J., ed.). Cambridge University Press. Cambridge, UK, 102140(1990). 
    27. Ip, M. et al. Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol 55:59-63 (2006). 
    28. Arora, S., Jain, J., Rajwade, J. M., Paknikar, K. M. Cellular responses induced by silver nanoparticles: In vitro studies. Toxicol Lett 179:93-100(2008). 
    29. Tice, R. R. et al. The single cell gel/comet assay: guide lines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35: 206-221 (2000). 
    30. Hussain, S. M. et al. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci 92:456-463 (2006). 
    31. Hsin, Y. H. et al. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179: 130-139 (2008). 

 저자의 다른 논문

  • Yang, Sung-Ik (8)

    1. 2005 "Fatigue Property of Oxidized Photochromic Dithienylethene Derivative for Permanent Optical Recording" Bulletin of the Korean Chemical Society 26 (11): 1675~1676    
    2. 2005 "고분해능 탄소나노튜브 AFM 탐침을 이용한 구조 분석 연구" 대한화학회지 = Journal of the Korean Chemical Society 49 (6): 517~520    
    3. 2009 "Photochromic optical memory based on non-destructive IR read-out" Photochemical & photobiological sciences : an international journal 8 (11): 1590~1594    
    4. 2010 "A New Ferric Ion-Selective Fluorescent Chemosensor with a Wide Dynamic Range" Bulletin of the Korean Chemical Society 31 (7): 2100~2102    
    5. 2011 "Neurotoxic effects by silica TM nanoparticle is independent of differentiation of SH-SY5Y cells" Molecular & cellular toxicology 7 (4): 381~388    
    6. 2011 "Comparison of cellular effects of titanium dioxide nanoparticles with different photocatalytic potential in human keratinocyte, HaCaT cells" Molecular & cellular toxicology 7 (1): 67~75    
    7. 2016 "초친수성 유수분리필터 제조공정에 관한 전과정평가" Korean chemical engineering research = 화학공학 54 (6): 800~805    

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기