본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of mechanical science and technology v.25 no.1, 2011년, pp.21 - 26   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

DSMC scheme to study phonon dynamics

Masao, Yusuke    (Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University   ); Okano, Masaya    (Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University   ); Matsumoto, Mitsuhiro    (Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University  );
  • 초록

    In order to solve the Boltzmann transport equation (BTE) of phonons for investigating heat conduction in non-metallic solids, we propose employing a DSMC (direct simulation Monte Carlo) scheme to simulate the dynamics of phonons analogous to rarefied gas. In contrast to treating the BTE with conventional linear approximation, this scheme requires no relaxation times as input parameters. We can directly investigate couplings among phonons with different modes, although we have to assume an appropriate scattering model for phonon-phonon interactions. In this paper, we describe the DSMC scheme for phonon dynamics and present some results with our prototype codes for a simple solid model. In the first case of single-branch four-phonon processes, we carried out simulations of non-equilibrium thin films with a temperature gradient. We found that the temperature jump at the boundaries can be successfully achieved. For the second case of three phonon processes, we developed a simulation code that takes into consideration the different acoustic branches to evaluate the mode-dependent relaxation time and mean free path. This type of DSMC scheme for phonons enables us to include other relevant factors, such as optical branches and phonon-electron interactions.


  • 주제어

    Boltzmann transport equation .   DSMC .   Heat conduction .   Phonon dynamics .   Solid thin film.  

  • 참고문헌 (16)

    1. H. B. G. Casimir, Note on the conduction of heat in crystals, Physica, 5 (1938) 495-500. 
    2. D. M. Rowe (ed.), Thermoelectrics Handbook: Micro to Nano, CRC Press, Florida, U.S.A. (2006). 
    3. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Course of Theoretical Physics, vol. 10, Butterworth, Oxford, U.K. (1981) Ch. 7. 
    4. A. A. Joshi and A. Majumdar, Transient ballistic and diffusive phonon heat transport in thin films, J. Appl. Phys., 74 (1993) 31-39. 
    5. G. Chen, Thermal conductivity and ballistic-phonon transport in the crossplane direction of superlattices, Phys. Rev., B 57 (1998) 14958-14973. 
    6. J. S. Jin and J. S. Lee, Electron-phonon interaction model and its application to thermal transport simulation during electrostatic discharge event in NMOS transistor, J. Heat Transf., 131 (2009), 092401 
    7. S. Mazumder and A. Majumdar, Monte Carlo study of phonon transport in solid thin films including dispersion and polarization, J. Heat Transf., 123 (2001), 749-759. 
    8. S. V. J. Narumanchi, J. Y. Murthy and C. H. Amon, Comparison of different phonon transport models for predicting heat conduction in silicon-on-insulator transistors, J. Heat Transf., 127 (2005), 713-723. 
    9. J. R. Lukes, D. Y. Li, X.-G. Liang and C.-L. Tien, Molecular dynamics study of solid thin-film thermal conductivity, J. Heat Transf., 122 (2000) 536-543. 
    10. C. J. Gomes, M. Madrid, J. V. Goicochea and C. H. Amon, In-plane and out-of-plain thermal conductivity of silicon thin films predicted by molecular dynamics, J. Heat Transf., 128 (2006) 1114-1121. 
    11. M. Matsumoto, T. Kunisawa, and P. Xiao, Relaxation of phonons in classical MD simulation, J. Thermal Sci. Tech., 3 (2008) 159-166. 
    12. M. Matsumoto and M. Okano, DSMC for phonon transport in solid thin films, Proc. ASME 2009 2nd Micro/Nanoscale Heat & Mass Transfer Int. Conf. (Shanghai, 2009) MNHMT2009-18281; J. Heat Transf., in press. 
    13. C. Kittel, Introduction to Solid State Physics, 8th ed., Wiley (2004). 
    14. L. Lindsay and D. A. Broido, Three-phonon phase space and lattice thermal conductivity in semiconductors, J. Phys.: Cond. Matt., 20 (2008) 165209. 
    15. D. J. Ecsedy and P. G. Klemens, Thermal resistivity of dielectric crystals due to four-phonon processes and optical modes, Phys. Rev. B 15 (1976) 5957. 
    16. J. M. Ziman, Electrons and Phonons, Oxford University Press, Oxford, U.K. (1960) 288-333. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기