본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

신경망을 이용한 MODIS NDVI의 자동화 변화탐지 기법
Automatic Change Detection of MODIS NDVI using Artificial Neural Networks

정명희    (안양대학교, 디지털미디어학과  );
  • 초록

    지구의 중요한 천연자원인 산림을 포함한 자연 식생환경은 지난 1세기 동안 많은 변화를 겪으며 기후에도 영향을 미치게 되어 현재 지구적 차원의 관심 속에서 다양한 연구가 진행되고 있다. 원격탐사는 분광적 특성을 이용하여 식생의 특성을 탐지할 수 있어 식생자원을 모니터링하는데 매우 효율적인 수단이다. 이러한 연구에서는 보통 원격탐사 측정을 분석하여 관찰된 화소가 식생을 포함하고 있는 정도를 나타내는 식생지수가 사용되고 있는데 NDVI가 이중 가장 많이 사용되는 식생지수이다. 본 논문에서는 MODIS NDVI 시계열 자료를 이용하여 자동으로 식생의 변화를 탐지해 가는 방법론이 제안되어 있다. 변화탐지를 위해 비모수 방법의 신경망 모형이 사용되었고 특성벡터로는 한 화소에서 다중 시기의 NDVI 차이와 더불어 NDVI 시계열 자료의 시간상의 관계가 함께 고려될수 있도록 제안되었다. 사용된 모형의 테스트를 위해 2006년부터 2011년까지 한반도 지역에 대한 MODIS MYD13Q1 자료가 사용되었다.


    Natural Vegetation cover, which is very important earth resource, has been significantly altered by humans in some manner. Since this has currently resulted in a significant effect on global climate, various studies on vegetation environment including forest have been performed and the results are utilized in policy decision making. Remotely sensed data can detect, identify and map vegetation cover change based on the analysis of spectral characteristics and thus are vigorously utilized for monitoring vegetation resources. Among various vegetation indices extracted from spectral reponses of remotely sensed data, NDVI is the most popular index which provides a measure of how much photosynthetically active vegetation is present in the scene. In this study, for change detection in vegetation cover, a Multi-layer Perceptron Network (MLPN) as a nonparametric approach has been designed and applied to MODIS/Aqua vegetation indices 16-day L3 global 250m SIN Grid(v005) (MYD13Q1) data. The feature vector for change detection is constructed with the direct NDVI diffenrence at a pixel as well as the differences in some subset of NDVI series data. The research covered 5 years (2006-20110) over Korean peninsular.


  • 주제어

    Remotely Sensed Data .   Vegetation index .   NDVI .   Neural Network .   MODIS.  

  • 참고문헌 (10)

    1. I. Gomez and M.P. Martin, "Prototyping an artificial neural network for burned area mapping on a regional scale in Mediterranean areas using MODIS images," International Journal of Applied Earth Observation and Geoinformation, Vol. 13, pp741-752, 2011 
    2. J.F. Mas, and J.J Flores, "The application of artificial neural networks to the analysis of remotely sensed data," International Journal of Remote Sensing, Vol. 29, No.3, pp.617-663, 2008 
    3. J.G. Lyon, D. Yuan, R.S. Lunetta, and C.D. Elvidge, "A change detection experiment using vegetation indices," Photogrammetric Engineering and Remote Sensing, Vol. 64, No .2, pp143-150, 1998 
    4. M.C. Hansen, Y.E. Shimabukuro, P. Potapov, and K. Pittman, "Comparing annual MODIS and PRODES forest cover change data for advancing monitoring of Brazilian forest cover," Remote Sensing of Environment, Vol. 112, pp.3784-3793, 2008 
    5. M. Negnevitsky, Artificial Intelligence, Addison Wesley, 2002 
    6. R.S. Lunetta, , J.F. Knight, J. Ediriwickrema, J.G. Lyon, and L.D. Worthy, "Land-cover change detection using multi-temporal MODIS NDVI data," Remote Sensing of Environment, Vol. 105, pp142-154, 2006 
    7. S. Ghosh, L. Bruzzone, and S. Patra, "A Context-Sensitive Technique for Unsupervised Change Detection Based on Hopfield-Type Neural Networks," Transaction on Geoscience and Remote Sensing, Vol.. 45, No. 3, pp. 778-789, 2007 
    8. S. Jin, and S.A. Sader, "MODIS time-series imagery for forest disturbance detection and quantification of patch size effects," Remote Sensing of Environment, Vol.99, pp462-470, 2005 
    9. 차수영, 서동조, 박종화, "MODIS자료를 이용한 북한 개마고원 및 백무고원 식생의 생물계절 모니터링, 대한원격탐사학회 Vol. 25 No.5, pp399-409, 2009 
    10. D.J. Hayes, W.B. Cohen, S.A. Sader, and D.E. Irwin, "Estimating proportional change in forest cover as a continuous variable from multi-year MODIS data", Remote Sensing of Environment, Vol. 112, pp 735-749, 2008 

 저자의 다른 논문

  • 정명희 (18)

    1. 1998 "비파괴 검사 응용을 위한 광섬유 수소 가스 센서의 개발" 韓國磁氣學會誌 = Journal of the Korean Magnetics Society 8 (6): 380~387    
    2. 1998 "원격탐사자료를 이용한 공간적 현상의 모형화 및 시뮬레이션 : 자연화재발생의 경우" 한국GIS학회지 = The journal of geographic information system association of Korea 6 (1): 77~90    
    3. 2001 "Contextual Modeling and Generation of Texture Observed in Single and Multi-channel Images" 대한원격탐사학회지 = Korean journal of remote sensing 17 (4): 335~344    
    4. 2003 "지표면 변화 탐색 및 예측 시스템을 위한 공간 모형" 한국GIS학회지 = The journal of geographic information system association of Korea 11 (3): 227~240    
    5. 2004 "Feature Extraction System for Land Cover Changes Based on Segmentation" 대한원격탐사학회지 = Korean journal of remote sensing 20 (3): 207~214    
    6. 2005 "휴대용 정보기기를 위한 플래시 기반 2단계 로킹 기법" Journal of information technology applications & management = 한국데이타베이스학회지 12 (4): 59~70    
    7. 2005 "마이크로입자의 레이저 Ablation으로 형성된 나노입자의 수펴소닉 적층법을 이용한 퍼멀로이 나노구조박막 적층에 관한 연구" 전기전자재료학회논문지 = Journal of the Korean institute of electronic material engineers 18 (5): 478~483    
    8. 2006 "데이터 마이닝을 이용한 차량 사고자 사망확률 모형" 電子工學會論文誌. Journal of the Institute of Electronics Engineers of Korea. TC, 통신 43 (9): 25~31    
    9. 2006 "IRT와 데이터 마이닝을 이용한 효과적인 평가 및 추천시스템" 韓國컴퓨터情報學會論文誌 = Journal of the Korea Society of Computer and Information 11 (4): 109~117    
    10. 2008 "적응적인 학습을 위한 텍스트 마이닝 기술" 電子工學會論文誌. Journal of the Institute of Electronics Engineers of Korea. CI, 컴퓨터 45 (3): 31~39    

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기