본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of electrical engineering & technology v.7 no.3, 2012년, pp.384 - 388   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Determination of the Ampacity of Buried Cable in Non-Homogenous Environmental Condition by 3D Computation

Vahidi, Behrooz    (Dept. of Electrical Engineering, Amirkabir University of Technology   ); Mahmoudi, Amin    (Dept. of Electrical Engineering, Amirkabir University of Technology  );
  • 초록

    Finite Volume Method (FVM) is chosen to calculate the heat transfer field and the heat generation with in the cable and heat dissipation in the surrounding soil of a three phase 145kV underground cable brunch that make it possible to analyze the ampacity of the cable. FLUENT as the proper software in this field is used to generate and solve the problem. Non-homogenous environment is considered for cable ampacity calculation and results are compare with homogenous environment condition.


  • 주제어

    Ampacity .   Cable .   Environmental .   3D simulation .   FVM.  

  • 참고문헌 (14)

    1. L. DeLeon, "Calculation of underground cable ampacity", CYME International T&D, pp 1-6, 2005. 
    2. G. L. Anders, Rating of Electric Power Cables- Ampacity Calculations for Transmission, Distribution and Industrial application, McGraw-Hill, 1998. 
    3. IEEE Standard, Power Cable Ampacity Tables, IEEE Std. 835-1994. 
    4. IEC Standard 60287, Calculation of the Continues Current Rating of Cables (100% load factor), 1st edition 1969, 2nd edition 1982, 3rd edition 1994-1995. 
    5. IEC Standard 60287, part 2-1, Calculation of Thermal Resistances, 1994. 
    6. J. H. Neher and M. H. McGrath, "The calculation of the temperature rise and load capability of cable systems", AIEE Trans. Power App. Syst., vol. 76, pp 752-772, 1957. 
    7. G. L. Anders and H. S. Radhakrishna, "Power cable thermal analysis with considerationof heat and moisture transfer in the soil", IEEE Trans. On Power Delivery, vol. 3, pp 1280-1288, 1988. 
    8. J. Nahman and M. Tanaskovic, "Determination of the current carrying capacity of cables using the finite element method", Electric Power Systems Reasearch, Elsevier, vol. 61, pp 109-117, 2002. 
    9. G. Gela, and J. J. Dai, "Calculation of thermal fields of underground cables using the boundary element method", IEEE Transaction on Power Delivery, vol. 3, pp 1341-1347, 1988. 
    10. G. Koopmans, G. M. L. M. Van de Wiel, L. J. M. Van Loon and C. L. Palland, "Soil physical route survey and cable thermal design procedure', IEE Proceedings, Pt. C, vol. 136, pp 341-346, 1989. 
    11. A. A. Al-Ohaly, "Performance of underground power cables under extreme soil and environmental conditions", Kuwait J. Sci. Eng., vol. 30, pp297-312, 2003. 
    12. P. Vaucheret, R. A. Hartlein, and W. Z. Black, "Ampacity derating factors for cables buried in short segments of conduit", IEEE Transaction on Power Delivery, vol. 20, pp 560-565, 2005. 
    13. FLUENT 6.3 (Getting Started Guide), Finite Volume Simulation Software, ANSYS Inc., Canonsburg, PA, 2006. 
    14. G. L. Anders, Rating of Electric Power Cables in Unfavorable Thermal Environments, 1st Edition, IEEE Press, 2005. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기