본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

한국콘텐츠학회논문지 = The Journal of the Korea Contents Association v.12 no.4, 2012년, pp.76 - 85  
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

관계형 다차원모델에 기반한 온라인 고객리뷰 분석시스템의 설계 및 구현
Study on Designing and Implementing Online Customer Analysis System based on Relational and Multi-dimensional Model

김근형    (제주대학교 경영정보학과   ); 송왕철    (제주대학교 컴퓨터공학과  );
  • 초록

    오피니언마이닝 기법은 대량의 고개리뷰들에 나타나는 핵심개체 또는 속성들에 대하여 고객들이 느끼는 긍정 또는 부정의 정도를 계산할 수 있지만, 그 분석능력이 단순하다는 한계가 있다. 본 논문에서는 온라인 고객리뷰들에 대하여 다차원적으로 분석할 수 있는 기법을 제안하였다. 기존의 OLAP기법을 텍스트 데이터형에 적용할 수 있도록 수정하였다. 다차원 분석모델은 명사축과 형용사축, 문서축으로 구성되는 3차원 공간 개념을 4개의 관계형 테이블로 실체화 한 것이다. 다차원 분석모델은 기존의 오피니언마이닝, 정보요약, 클러스터링 알고리즘들을 융합할 수 있는 새로운 틀이라는 점에서 그 가치가 있다. 본 논문에서 제안한 다차원 분석모델과 알고리즘들을 실제로 구현하여 온라인 고객리뷰에 대한 복잡한 분석을 수행할 수 있음을 확인하였다.


    Through opinion mining, we can analyze the degree of positive or negative sentiments that customers feel about important entities or attributes in online customer reviews. But, the limit of the opinion mining techniques is to provide only simple functions in analyzing the reviews. In this paper, we proposed novel techniques that can analyze the online customer reviews multi-dimensionally. The novel technique is to modify the existing OLAP techniques so that they can be applied to text data. The novel technique, that is, multi-dimensional analytic model consists of noun, adjective and document axes which are converted into four relational tables in relational database. The multi-dimensional analysis model would be new framework which can converge the existing opinion mining, information summarization and clustering algorithms. In this paper, we implemented the multi-dimensional analysis model and algorithms. we recognized that the system would enable us to analyze the online customer reviews more complexly.


  • 주제어

    다차원 분석모델 .   오피니언마이닝 .   정보요약 .   클러스터링 .   연관규칙탐사 .   관계형 모델.  

  • 참고문헌 (19)

    1. B. Liu, M. Hu, and J. Cheng, "Opinion observer: analyzing and comparing opinions on the Web," Proc. of the 14th international conference on WWW, pp.10-14, 2005. 
    2. C. Scaffidi, K. Bierhoff, E. Chang, M. Felker, H. Ng, and C. Jin, "Red Opal: Product-Feature Scoring from Reviews," Proc. of the 8th ACM conference on Electronic commerce, pp.11-15, 2007. 
    3. X. W. Ding and Bing Lui, "The Utility of Lingusitic Rules in Opinion Mining," SIGR, pp.811-812, 2007. 
    4. X. W. Ding, "A Holistic Lexicon-Based Appro ach to Opinion Mining," Proc. of the inter national conference on web search and web mining, pp.231-240, 2008. 
    5. E. Courses and T. Surveys, "Using SentiWordNet for multilingual sentiment anal ysis," Data Engineering Workshop ICDEW, pp.102-110, 2008. 
    6. M. Q. Hu and Bing Liu, "Mining and Summarizing Customer Reviews," KDD'04, pp.168-177, 2004. 
    7. W. Y. Kim, J. S. Ryu, K. I. Kim, U. M. Kim, "A Method for Opinion Mining of Product Reviews using Association Rules," ICIS, pp.270-274, 2009. 
    8. A. Pak and P. Paroubek, "Twitter as a Corpus for Sentiment Analysis and Opinion Mining," In Proceedings of the European Language Resources Association, pp.1321-1326, 2010. 
    9. Ismael S. Silva, JanainaGomide, Adriano Veloso, Wagner Meira Jr., and Renato Ferreira, "Effective Sentiment Stream Analysis with Self-Augmenting Training and Demand-Driven Projection," SIGIR, pp.475-484, 2011. 
    10. Guang Giu, Bing Liu, J. J. Bu and Chun Chen, "Expanding DomainSentiment Lexicon through Double Propagation," Proc. of 21th IJCAI-09, pp.1199-1204, 2009. 
    11. Lei Zhang, Bing Liu, S. H. Lim, and Eamonn O'Brien-Strain, "Extracting and Ranking Product Features in Opinion Documents," Proceedings of the 23rd International Conference on Computational Linguistics, pp.1462-1470, 2010 
    12. G. Salton, A. Singhal, C. Buckley, and M. Mitra, "Automatic Text Decomposition using Text Segments and Text Themes," ACM Conference on Hypertext, pp.1-13, 1995. 
    13. B. Boguraev and C. Kennedy, "Salience-Based Content Characterization of Text Documents," Proc. of the ACL'97/EACL'97 Workshop on Intelligent Scalable Text Summarization, 1997. 
    14. Fabrizio Sebastiani, "Machine Learning in Automated Text Categorization," ACM Computing Surveys, Vol.34, No.1, pp.1-47, 2002. 
    15. K. R. Larsen and D. E. Monarchi, "A Mathematical Approach to Categorization and Labeling of Qualitative Data: The Latent Categorization Method," Sociological Methodology, Vol.34, No.1, pp.349-392, 2004. 
    16. Manu Konchady, Text Mining Application Programming, Thomson Charles River Media, 2006. 
    17. http://nlp kookmin.ac.kr /HAM/kor/download.html 
    18. 강승식, 한국어 형태소분석과 정보검색, 홍릉과학출판사, 2003. 
    19. 김근형, "종속성 네트워크 기반의 온라인 고객리뷰 분석시스템의 설계 및 구현", 한국콘텐츠학회논문지, 제10권, 제11호, pp.30-37, 2010.     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기