본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Computers & concrete v.9 no.1, 2012년, pp.1 - 19   SCIE 피인용횟수: 2
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Size-effect of fracture parameters for crack propagation in concrete: a comparative study

Kumar, Shailendra    (Department of Civil Engineering, National Institute of Technology   ); Barai, S.V.    (Department of Civil Engineering, Indian Institute of Technology  );
  • 초록

    The size-effect study of various fracture parameters obtained from two parameter fracture model, effective crack model, double-K fracture model and double-G fracture model is presented in the paper. Fictitious crack model (FCM) for three-point bend test geometry for cracked concrete beam of laboratory size range 100-400 mm is developed and the different fracture parameters from size effect model, effective crack model, double-K fracture model and double-G fracture model are evaluated using the input data obtained from FCM. In addition, the fracture parameters of two parameter fracture model are obtained using the mathematical coefficients available in literature. From the study it is concluded that the fracture parameters obtained from various nonlinear fracture models including the double-K and double-G fracture models are influenced by the specimen size. These fracture parameters maintain some definite interrelationship depending upon the specimen size and relative size of initial notch length.


  • 주제어

    concrete fracture .   fracture process zone .   cohesive stress distribution .   nonlinear fracture models .   size-effect .   three-point bending test.  

  • 참고문헌 (51)

    1. Alshoaibi, A.M. (2010), "Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading", Struct. Eng. Mech., 35(3), 283-299.   
    2. Barenblatt, G.I. (1962), "The mathematical theory of equilibrium cracks in brittle fracture", Adv. Appl. Mech., 7(1), 55-129. 
    3. Bazant, Z.P. (2002), "Concrete fracture models: testing and practice", Eng. Fract. Mech., 69, 165-205. 
    4. Bazant, Z.P., Gettu, R. and Kazemi, M.T. (1991), "Identification of nonlinear fracture properties from size effect tests and structural analysis based on geometry-dependent R-curve", Int. J. Rock Mech. Min., 28(1), 43-51. 
    5. Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16(93), 155-177. 
    6. Bazant, Z.P., Kim, J.K. and Pfeiffer, P.A. (1986), "Determination of fracture properties from size effect tests", J. Struct. Eng. - ASCE, 112(2), 289-307. 
    7. Bazant, Z.P. and Planas, J. (1998), Fracture and size effect in concrete and other quasibrittle materials, Florida CRC Press. 
    8. Carpinteri, A. (1989), "Cusp catastrophe interpretation of fracture instability", J. Mech. Phys. Solids, 37(5), 567- 582. 
    9. Cusatis, G. and Schauffert, E.A. (2009), "Cohesive crack analysis of size effect", Eng. Fract. Mech., 76, 2163- 2173. 
    10. Dugdale, D.S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solids, 8(2), 100-104. 
    11. Elices, M. and Planas, J. (1996), "Fracture mechanics parameters of concrete an overview", Adv. Cem. Based Mater., 4, 116-127. 
    12. Elices, M., Guinea, G.V. and Planas, J. (1992), "Measurement of the fracture energy using three-point bend tests: Part 3- Influence of cutting the P-$\delta$ tail", Mater. Struct., 25, 327-334. 
    13. Elices, M., Guinea, G.V. and Planas, J. (1997), "On the measurement of concrete fracture energy using threepoint bend tests", Mater. Struct., 30, 375-376. 
    14. Elices, M., Rocco, C. and Rosello, C. (2009), "Cohesive crack modeling of a simple concrete: experimental and numerical results", Eng. Fract. Mech., 76, 1398-1410. 
    15. Gasser, T.C. (2007), "Validation of 3D crack propagation in plain concrete. Part II: Computational modeling and predictions of the PCT3D test", Comput. Concrete, 4(1), 67-82. 
    16. Guinea, G.V., Planas, J. and Elices, M. (1992), "Measurement of the fracture energy using three-point bend tests: Part 1 - Influence of experimental procedures", Mater. Struct., 25,, 212-218. 
    17. Hanson, J.H. and Ingraffea, A.R. (2003), "Using numerical simulations to compare the fracture toughness values for concrete from the size-effect, two-parameter and fictitious crack models", Eng. Fract. Mech., 70, 1015- 1027. 
    18. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. 
    19. Jenq, Y.S. and Shah, S.P. (1985), "Two parameter fracture model for concrete", J. Eng. Mech. - ASCE, 111(10), 
    20. Karihaloo, B.L. and Nallathambi, P. (1989), "An improved effective crack model for the determination of fracture toughness of concrete", Cement Concrete Res., 19, 603-610. 
    21. Karihaloo, B.L. and Nallathambi, P. (1990), "Size-effect prediction from effective crack model for plain concrete", Mater. Struct., 23(3), 178-185. 
    22. Karihaloo, B.L. and Nallathambi, P. (1991), "Notched beam test: mode I fracture toughness", Fracture Mechanics Test methods for concrete, Report of RILEM Technical Committee 89-FMT (Edited by S.P. Shah and A. Carpinteri), Chamman & Hall, London, 1-86. 
    23. Kim, J.K., Lee, Y. and Yi, S.T. (2004), "Fracture characteristics of concrete at early ages", Cement Concrete Res., 34, 507-519. 
    24. Kumar, S. and Barai, S.V. (2008), "Influence of specimen geometry and size-effect on the KR-curve based on the cohesive stress in concrete", Int. J. Fracture, 152, 127-148. 
    25. Kumar, S. and Barai, S.V. (2009a), "Equivalence between stress intensity factor and energy approach based fracture parameters of concrete", Eng. Fract. Mech., 76, 1357-1372. 
    26. Kumar, S. and Barai, S.V. (2009b), "Effect of softening function on the cohesive crack fracture parameters of concrete CT specimen", Sadhana-Acad. P. Eng. S., 36(6), 987-1015. 
    27. Kumar, S. and Barai, S.V. (2010), "Size-effect prediction from the double-K fracture model for notched concrete beam", Int. J. Damage Mech., 9, 473-497. 
    28. Kwon, S.H., Zhao, Z. and Shah, S.P. (2008), "Effect of specimen size on fracture energy and softening curve of concrete: Part II. Inverse analysis and softening curve", Cement Concrete Res., 38, 1061-1069. 
    29. MATLAB, Version 7, The MathWorks, Inc., Copyright 1984-2004. 
    30. Nallathambi, P. and Karihaloo, B.L. (1986), "Determination of specimen-size independent fracture toughness of plain concrete", Mag. Concrete Res., 38(135), 67-76. 
    31. Ouyang, C., Tang, T. and Shah, S.P. (1996), "Relationship between fracture parameters from two parameter fracture model and from size effect model", Mater. Struct., 29(2), 79-86. 
    32. Park, K., Paulino, G.H. and Roesler, J.R. (2008), "Determination of the kink point in the bilinear softening model for concrete", Eng. Fract. Mech., 7, 3806-3818. 
    33. Petersson, P.E. (1981), "Crack growth and development of fracture zone in plain concrete and similar materials", Report No. TVBM-100, Lund Institute of Technology. 
    34. Philip, P. (2009), "A quasistatic crack propagation model allowing for cohesive forces and crack reversibility", Interact. Multiscale Mech., 2(1), 31-44. 
    35. Planas, J. and Elices, M. (1990), "Fracture criteria for concrete: mathematical validations and experimental validation", Eng. Fract. Mech., 35, 87-94. 
    36. Planas, J. and Elices, M. (1991), "Nonlinear fracture of cohesive material", Int. J. Fracture, 51, 139-157. 
    37. Planas, J. and Elices, M. (1992), "Shrinkage eignstresses and structural size-effects", In Fracture Mechanics of Concrete Structures, Z.P. Bazant, ed., Elsevier Applied Science, London, 939-950. 
    38. Planas, J., Elices, M. and Guinea, G.V. (1992), "Measurement of the fracture energy using three-point bend tests: Part 2-Influence of bulk energy dissipation", Mater. Struct., 25, 305-312. 
    39. RILEM Draft Recommendation (TC50-FMC) (1985), "Determination of fracture energy of mortar and concrete by means of three-point bend test on notched beams", Mater. Struct., 18(4), 287-290. 
    40. RILEM Draft Recommendations (TC89-FMT) (1990a), "Determination of fracture parameters ( and CTODc) of plain concrete using three-point bend tests", Mater. Struct., 23(138), 457-460. 
    41. RILEM Draft Recommendations (TC89-FMT) (1990b), "Size-effect method for determining fracture energy and process zone size of concrete", Mater. Struct., 23(138), 461-465. 
    42. Roesler, J., Paulino, G.H., Park, K. and Gaedicke, C. (2007), "Concrete fracture prediction using bilinear softening", Cement Concrete Compos., 29, 300-312. 
    43. Tada, H., Paris, P.C. and Irwin, G. (1985), The stress analysis of cracks handbook, Paris Productions Incorporated, St. Louis, Missouri, USA. 
    44. Tang, T., Shah, S.P. and Ouyang, C. (1992), "Fracture mechanics and size effect of concrete in tension", J. Struct. Eng. - ASCE, 118(11), 3169-3185. 
    45. Xu, S. and Reinhardt, H.W. (1998), "Crack extension resistance and fracture properties of quasi-brittle materials like concrete based on the complete process of fracture", Int. J. Fracture, 92, 71-99. 
    46. Xu, S. and Reinhardt, H.W. (1999a), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part I: Experimental investigation of crack propagation", Int. J. Fracture, 98,111-149. 
    47. Xu, S. and Reinhardt, H.W. (1999b), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part II: Analytical evaluating and practical measuring methods for three-point bending notched beams", Int. J. Fracture, 98, 151-77. 
    48. Xu, S. and Reinhardt, H.W. (1999c), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part III: compact tension specimens and wedge splitting specimens", Int. J. Fracture, 98, 179-193. 
    49. Xu, S. and Zhang, X. (2008), "Determination of fracture parameters for crack propagation in concrete using an energy approach", Eng. Frac. Mech., 75, 4292-4308. 
    50. Xu, S., Reinhardt, H.W., Wu, Z. and Zhao, Y. (2003), "Comparison between the double-K fracture model and the two parameter fracture model", Otto-Graf J., 14, 131-158. 
    51. Zhao, Z., Kwon, S.H. and Shah, S.P. (2008), "Effect of specimen size on fracture energy and softening curve of concrete: Part I. Experiments and fracture energy", Cement Concrete Res., 38, 1049-1060. 
  • 이 논문을 인용한 문헌 (2)

    1. 2014. "" Structural engineering and mechanics : An international journal, 50(4): 441~457     
    2. 2015. "" Computers & concrete, 15(2): 199~213     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기