본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Food science and biotechnology v.21 no.2, 2012년, pp.531 - 541   SCIE SCOPUS
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Volatile Chemical and Carotenoid Profiles in Watermelons [Citrullus vulgaris (Thunb.) Schrad (Cucurbitaceae)] with Different Flesh Colors

Liu, Cuihua    (Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University   ); Zhang, Hongyan    (Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University   ); Dai, Zhaoyi    (Institute of Economic Crops, Hubei Academy of Agricultural Sciences   ); Liu, Xi    (Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University   ); Liu, Yue    (Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University   ); Deng, Xiuxin    (Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University   ); Chen, Feng    (Department of Food, Nutrition, and Packaging Sciences, Clemson University   ); Xu, Juan    (Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural Uni  );
  • 초록

    Twelve watermelon [Citrullus vulgaris (Thunb.) Schrad (Cucurbitaceae)] cultivars with different flesh colors were analyzed by HPLC, GC-FID, and GC-MS for their differences in carotenoid, soluble sugar, organic acid, and flavor. Results showed that all-trans violaxanthin, 9-cis-violaxanthin, and luteoxanthin were the main carotenoid esters in watermelons with yellow flesh. However, watermelons with red flesh were rich in all-trans lycopene and their cis-isomers. High concentrations of ${\beta}$ -carotene and pro-lycopenes were found in watermelon with orange-yellow flesh. Large variations in the sucrose concentration were observed among the different watermelons. Sucrose and/or fructose were the dominant sugars, while citric acid and malic acid were the main organic acids in watermelon flesh. Limonene was detected in the watermelon flesh of all investigated genotypes. Interestingly, partial correlation analysis of the chemical concentrations revealed 2 significant (p ${\beta}$ -ionone and ${\beta}$ -carotene, and between (E)-geranyl acetone and prolycopenes.


  • 주제어

    watermelon .   carotenoid .   flavor .   HPLC .   GC-MS.  

  • 참고문헌 (34)

    1. Mahattanatawee K, Rouseff R, Valim MF, Naim M. Identification and volatile impact of norisoprenoids in orange juice. J. Agr. Food Chem. 53: 393-397 (2005) 
    2. Iijima Y, Gang DR, Fridman E, Lewinsohn E, Pichersky E. Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol. 134: 370-379 (2004) 
    3. Ilg A, Beyer P, Al-Babili S. Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis. FEBS J. 276: 736-747 (2009) 
    4. Hashizume T, Shimamoto I, Harushima Y, Yui M, Sato T, Imai T, Hirai M. Construction of a linkage map for watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai) using random amplified polymorphic DNA (RAPD). Euphytica 90: 265-273 (1996) 
    5. Alexander L, Grierson D. Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening. J. Exp. Bot. 53: 2039-2055 (2002) 
    6. Beaulieu JC, Lea JM. Characterization and semiquantitative analysis of volatiles in seedless watermelon varieties using solid-phase microextraction. J. Agr. Food Chem. 54: 7789-7793 (2006) 
    7. Bartolozzi F, Bertazza G, Bassi D, Cristoferi G. Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas-liquid chromatography. J. Chromatogr. A 758: 99-107 (1997) 
    8. Liu Q, Xu J, Liu YZ, Zhao XL, Deng XX, Guo LL, Gu JQ. A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). J. Exp. Bot. 58: 4161-4171 (2007) 
    9. Wurst S, Van Dam NM, Monroy F, Biere A, Van der Putten WH. Intraspecific variation in plant defense alters effects of root herbivores on leaf chemistry and aboveground herbivore damage. J. Chem. Ecol. 34: 1360-1367 (2008) 
    10. van Den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gas - liquid partition chromatography. J. Chromatogr. A 11: 463-471 (1963) 
    11. Beaulieu JC, Grimm CC. Identification of volatile compounds in cantaloupe at various developmental stages using solid phase microextraction. J. Agr. Food Chem. 49: 1345-1352 (2001) 
    12. Kemp T, Knavel D, Stoltz L. 3,6-Nonadien-1-ol from Citrullus vulgaris and Cucumus melo. Phytochemistry 13: 1167-1170 (1974) 
    13. Arthur CL, Pratt K, Motlagh S, Pawliszyn J, Belardi RP. Environmental analysis of organic compounds in water using solid phase micro extraction. J. High Res. Chromatog. 15: 741-744 (1992) 
    14. Britton G, Liaaen-Jensen S, Pfander H. Carotenoids Handbook. 1st ed. Birkhauser, Basel, Germany. p. 676 (2004) 
    15. Grotewold E. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57: 761-780 (2006) 
    16. Lewinsohn E, Sitrit Y, Bar E, Azulay Y, Ibdah M, Meir A, Yosef E, Zamir D, Tadmor Y. Not just colors-carotenoid degradation as a link between pigmentation and volatile in tomato and watermelon fruit. Trends Food Sci. Tech. 16: 407-415 (2005) 
    17. Lewinsohn E, Sitrit Y, Bar E, Azulay Y, Meir A, Zamir D, Tadmor Y. Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. J. Agr. Food Chem. 53: 3142-3148 (2005) 
    18. Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR. Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276: 1872-1874 (1997) 
    19. Ibdah M, Azulay Y, Portnoy V, Wasserman B, Bar E, Meir A, Burger Y, Hirschberg J, Schaffer AA, Katzir N, Tadmor Y, Lewinsohn E. Functional characterization of CmCCD1, a carotenoid cleavage dioxygenase from melon. Phytochemistry 67: 1579-1589 (2006) 
    20. Huang FC, Horvath G, Molnarb P, Turcsic E, Delic J, Schraderd J, Sandmanne G, Schmidta H, Schwaba W. Substrate promiscuity of RdCCD1, a carotenoid cleavage oxygenase from Rosa damascena. Phytochemistry 70: 457-464 (2009) 
    21. Schwartz SH, Qin X, Loewen MC. The biochemical characterization of two carotenoid cleavage enzymes from arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J. Biol. Chem. 279: 46940-46945 (2004) 
    22. Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 14: 1232- 1238 (2004) 
    23. Bouvier F, Dogbo O, Camara B. Biosynthesis of the food and cosmetic plant pigment bixin (annatto). Science 300: 2089-2091 (2003) 
    24. Giuliano G, Al-Babili S, von Lintig J. Carotenoid oxygenases: Cleave it or leave it. Trends Plant Sci. 8: 145-149 (2003) 
    25. Du X, Finn CE, Qian MC. Volatile composition and odor-activity value of thornless 'Black Diamond' and 'Marion' blackberries. Food Chem. 119: 1127-1134 (2010) 
    26. Kloer DP, Schulz GE. Structural and biological aspects of carotenoid cleavage. Cell Mol. Life Sci. 63: 2291-2303 (2006) 
    27. Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles ${\beta}$-ionone, pseudoionone, and geranylacetone. Plant J. 40: 882-892 (2004) 
    28. Locas CP, Yaylayan VA. Origin and mechanistic pathways of formation of the parent furan - A food toxicant. J. Agr. Food Chem. 52: 6830-6836 (2004) 
    29. Lee HS, Castle WS, Coates GA. Characterization of carotenoids in juice of red navel orange (Cara Cara). J. Agr. Food Chem. 49: 2563- 2568 (2001) 
    30. de Faria AF, Hasegawa PN, Chagas EA, Pio R, Purgatto E, Mercadante AZ. Cultivar influence on carotenoid composition of loquats from Brazil. J. Food Compos. Anal. 22: 196-203 (2009) 
    31. Cross J, Gabai M, Lifshitz A. A comparative study of the carotenoid pigments in juice of Shamouti, Valencia, and Washington oranges, three varieties of Citrus sinensis. Phytochemistry 11: 303-308 (1972) 
    32. Qin J, Yeum KJ, Johnson EJ, Krinsky NI, Russell RM, Tang G. Determination of 9-cis ${\beta}$-carotene and ${\zeta}$-carotene in biological samples. J. Nutr. Biochem. 19: 612-618 (2008) 
    33. Schierle J, Bretzel W, Buhler I, Hess NFD, Steiner K, Schuep W. Content and isomeric ratio of lycopene in food and human blood plasma. Food Chem. 59: 459-465 (1997) 
    34. Lee MT, Chen BH. Separation of lycopene and its cis isomers by liquid chromatography. Chromatographia 54: 613-617 (2001) 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 이용한 콘텐츠
이 논문과 함께 출판된 논문 + 더보기