본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of communications and networks   v.18 no.6, 2016년, pp.902 - 912   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Optimal Harvest-Use-Store Design for Delay-Constrained Energy Harvesting Wireless Communications

Yuan, Fangchao   (Jiangsu Key Laboratory of Wireless Communications, College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications  ); Jin, Shi   (National Mobile Communications Research Laboratory, Southeast University  ); Wong, Kai-Kit   (Department of Electronic and Electrical Engineering, University College London  ); Zhang, Q.T.   (Jiangsu Key Laboratory of Wireless Communications, College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications  ); Zhu, Hongbo   (Jiangsu Key Laboratory of Wireless Communications, College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications  );
  • 초록

    Recent advances in energy harvesting (EH) technology have motivated the adoption of rechargeable mobile devices for communications. In this paper, we consider a point-to-point (P2P) wireless communication system in which an EH transmitter with a non-ideal rechargeable battery is required to send a given fixed number of bits to the receiver before they expire according to a preset delay constraint. Due to the possible energy loss in the storage process, the harvest-use-and-store (HUS) architecture is adopted. We characterize the properties of the optimal solutions, for additive white Gaussian channels (AWGNs) and then block-fading channels, that maximize the energy efficiency (i.e., battery residual) subject to a given rate requirement. Interestingly, it is shown that the optimal solution has a water-filling interpretation with double thresholds and that both thresholds are monotonic. Based on this, we investigate the optimal double-threshold based allocation policy and devise an algorithm to achieve the solution. Numerical results are provided to validate the theoretical analysis and to compare the optimal solutions with existing schemes.


  • 주제어

    Delay-constrained  . energy harvesting (EH)  . harvest-use-store (HUS)  . residual battery level  . storage inefficiency  .

  • 참고문헌 (22)

    1. A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, "Power management in energy harvesting sensor networks," ACM Trans. Embed. Comput. System, vol. 6, no. 4, Sept. 2007. 
    2. C. Ho and R. Zhang, "Optimal energy allocation for wireless communications powered by energy harvesters," in Proc. IEEE ISIT, 2010, pp. 2368-2372. 
    3. O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, "Transmission with energy harvesting nodes in fading wireless channels: Optimal policies," IEEE J. Sel. Areas Commun, vol. 29, pp. 1732-1743, Sept. 2011. 
    4. S. Luo, R. Zhang, and T. J. Lim, "Optimal save-then-transmit protocol for energy harvesting wireless transmitters," IEEE Trans. Wireless Commun., vol. 12, no. 3, pp. 1196-1207, Mar. 2013. 
    5. M. Antepli, E. Uysal-Biyikoglu, and H. Erkal, "Optimal packet scheduling on an energy harvesting broadcast link," IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1721-1731, Sept. 2011. 
    6. J. Yang, O. Ozel, and S. Ulukus, "Broadcasting with an energy harvesting rechargeable transmitter," IEEE Trans. Wireless Commun., vol. 11, no. 2, pp. 571-583, Feb. 2012. 
    7. J. Yang and S. Ulukus, "Optimal packet scheduling in a multiple access channel with rechargeable nodes," in Proc. IEEE ICC, Kyoto, Japan, June 2011. 
    8. O. Orhan and E. Erkip, "Throughput maximization for energy harvesting two-hop networks," in Proc. IEEE ISIT, July 2013. 
    9. O. Orhan and E. Erkip, "Optimal transmission policies for energy harvesting two-hop networks," in Proc. CISS, Princeton, NJ, Mar. 2012. 
    10. B. Devillers and D. Gunduz, "A general framework for the optimization of energy harvesting communication systems with battery imperfections," Journal of Commun. and Netw., Spec. Issue on Energy Harvesting in Wireless Netw., vol. 14, no. 2, pp. 130-139, Apr. 2012.     
    11. N. Michelusi, L. Badia, R. Carli, L. Corradini, and M. Zorzi, "Energy Management Policies for Harvesting-Based Wireless Sensor Devices with Battery Degradation," IEEE Trans. Commun., vol. 61, no. 12, pp. 4934-4947, Dec. 2013. 
    12. K. Tutuncuoglu and A. Yener, "Optimum transmission policies for battery limited energy harvesting nodes," IEEE Trans. Wireless Commun., vol. 11, no. 3, pp. 1180-1189, Mar. 2012. 
    13. F. Yuan, Q. Zhang, S. Jin and H. Zhu, "Optimal harvest-use-store strategy for energy harvesting wireless systems," IEEE Trans. Wireless Commun., vol. 14, no. 2, pp. 698-710, Feb. 2015. 
    14. G. Miao, N. Himayat, G. Li, and S. Talwar, "Distributed interference-aware energy-efficient power optimization," IEEE Trans. Wireless Commun., vol. 10, no. 4, pp. 1323-1333, Apr. 2011. 
    15. G. Miao, N. Himayat, and G. Li, "Energy-efficient link adaptation in frequency-selective channels," IEEE Trans. Commun., vol. 58, no. 2, pp. 545-554, Feb. 2010. 
    16. Z. Chong and E. Jorswieck, "Energy-efficient power control for MIMO time-varying channels," in Proc. IEEE GreenCom, 2011. 
    17. C. Li, S. Song, J. Zhang, and K. Letaief, "Maximizing energy efficiency in wireless networks with a minimum average throughput requirement," in Proc. IEEE WCNC., Apr. 2012, pp. 1130-1134. 
    18. M. Zafer and E. Modiano, "Delay constrained energy efficient data transmission over a wireless fading channel," in Proc. Workshop on Inf. Theory and Appl., La Jolla, CA, Jan./Feb. 2007, pp. 289-298. 
    19. A. Fu, E. Modiano, and J. N. Tsitsiklis, "Optimal transmission scheduling over a fading channel with energy and deadline constraints," IEEE Trans. Wireless Commun., vol. 5, no. 3, pp. 630-641, Mar. 2006. 
    20. D. Shuman and M. Liu, "Energy-efficient transmission scheduling with strict underflow constraints," IEEE Trans. Inf. Theory., vol. 57, no. 3, pp. 1344-1367, Mar. 2011. 
    21. J. Yang and S. Ulukus, "Optimal packet scheduling in an energy harvesting communication system," IEEE Trans. Commun., vol. 60, no. 1, pp. 220-230, Jan. 2012. 
    22. T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. New York, NY, USA: Wiley, 2006. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기