본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

한국융합학회논문지 = Journal of the Korea Convergence Society   v.9 no.6, 2018년, pp.1 - 7   KCI
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

헬스케어 정보 수집을 위한 병원간 데이터 통합 모델 설계
Design of data integration model between hospitals for healthcare information collection

정윤수   (목원대학교 정보통신융합공학부  ); 한군희   (백석대학교 정보통신공학과  );
  • 초록

    최근 IT 기술이 발달함에 따라 병원에서 사용되고 있는 의료 장비도 고사양의 성능을 요구하고 있다. 그러나, 사용자는 사용자의 상황에 따라 서로 다른 병원을 내원하기 때문에, 병원에서 진료 받은 의료 정보가 병원마다 분산되어 있다. 본 논문에서는 서로 다른 병원에 내원한 사용자의 헬스케어 정보 수집을 위해서 병원에 저장되어 있는 사용자의 헬스케어 정보를 효율적으로 통합하기 위한 모델을 제안한다. 제안모델은 사용자 중심의 헬스케어 정보 수집을 위해서 개인 웨어러블 장치로부터 수집된 사용자의 헬스케어 정보를 서로 동기화한다. 또한, 제안 모델은 헬스케어 서비스 센터와 데이터 공유를 원활하게 수행하기 위해서 클라우드 환경에 존재하는 데이터베이스에서 사용자의 헬스케어 정보와 관련된 무결성 및 유효성 검사를 수행한다. 특히, 제안모델은 모바일 플랫폼으로부터 수집된 사용자의 헬스케어 정보를 원활하게 관리하기 위해서 트리기반의 데이터 처리를 수행할 수 있도록 하였다.


    As IT technology develops recently, medical equipment used in hospitals is demanding high performance. However, since the user visits different hospitals depending on the user's situation, the medical information treated at the hospital is distributed among the hospitals. In this paper, we propose a model to efficiently integrate the health care information of the users stored in the hospital in order to collect the healthcare information of the users who visited the different hospitals. The proposed model synchronizes users' healthcare information collected from personal wearable devices to collect user - centered healthcare information. In addition, the proposed model performs integrity and validity check related to user's healthcare information in a database existing in a cloud environment in order to smoothly share data with the healthcare service center. In particular, the proposed model enables tree - based data processing to smoothly manage healthcare information collected from mobile platforms.


  • 주제어

    헬스케어  . 데이터 통합  . 병원  . 클라우드 서비스  . 모바일 플랫폼  . 병원 관리  .

  • 참고문헌 (21)

    1. F. D. Davis. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly. 13, 319-340. 
    2. Y. S. Jeong. (2015). An Efficiency Management Scheme using Big Data of Healthcare Patients using Puzzy AHP. Journal of Digital Convergence, 13(4), 227-233. 
    3. Y. S. Jeong. (2016). An Efficient IoT Healthcare Service Management Model of Location Tracking Sensor. Journal of Digital Convergence, 14(3), 261-267. 
    4. F. Khennou, Y. Idrissi Khamlichi & N. E. H. Chaoui. (2016). Designing a health data management system based hadoop-agent. Proceedings of the 2016 4th IEEE International Colloquium on Information Science and Technology (CiSt), 71-76 
    5. Y. S. Jeong, Y. T. Kim & G. C. Park. (2017). A hierarchical property-based multi-level approach method for improves user access control in a cloud environment. Journal of the Korea Convergence Society, 8(11), 7-13. 
    6. Y. S. Jeong. (2017). User Authentication Key Establishment Scheme based on Color Model for Healthcare Environment. Journal of the Korea Convergence Society, 8(3), 115-121. 
    7. F. A. Rahim, Z. Ismail & G. N. Samy. (2017). Healthcare employees' perception on information privacy concerns. Proceedings of the 2017 International Conference on Research and Innovation in Information Systems (ICRIIS), 1-6. 
    8. Y. S. Jeong, Y. T. Kim & G. C. Park. (2017). A Design of Service Improvement Model for Emergency Medical System using Augmented Reality. Journal of Convergence for Information Technology, 7(1), 17-24. 
    9. A. Cenci, D. Liciotti, I. Ercoli, P. Zingaretti & V. P. Carnielli. (2016). A cloud-based healthcare infrastructure for medical device integration: The bilirubinometer case study. Proceedings of the 2016 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), 1-6. 
    10. Y. S. Jeong. (2017). Data Storage and Security Model for Mobile Healthcare Service based on IoT. Journal of Digital Convergence, 15(3), 187-193. 
    11. Y. S. Jeong. (2017). Subnet Generation Scheme based on Deep Learing for Healthcare Information Gathering. Journal of Digital Convergence, 15(3), 221-228. 
    12. S. Lavanya, G. Lavanya & J. Divyabharathi. (2017). Remote prescription and I-Home healthcare based on IoT. Proceedings of the 2017 International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT), 1-3. 
    13. K. H. Han & Y. S. Jeong. (2017). Efficient Authentication Establishment Scheme between IoT Device based on Pascal Triangle Theory. Journal of the Korea Convergence Society, 8(7), 15-21. 
    14. A. Bahga & V. K. Madisetti. (2013). A Cloud-based Approach for Interoperable Electronic Health Records (EHRs). IEEE Journal of Biomedical and Health Informatics, 17(5), 894-906. 
    15. N. Singh, A. Jangra, I. Elamvazuthi & K. Kashyap. (2017). Healthcare Data Privacy Measures to Cure & Care Cloud Uncertainties, Proceedings of the 4th IEEE International Conference on Signal Processing, Computing and Control(ISPCC 2017), 402-407. 
    16. M. Panda, S. M. Ali & S. K. Panda. (2017). Big data in health care: A mobile based solution. Proceedings of the 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC), 149-152. 
    17. Y. S. Jeong, Y. H. Yon & J. H. Ku. (2017). Hash-chain-based IoT authentication scheme suitable for small and medium enterprises. Journal of Convergence for Information Technology, 7(4), 105-111. 
    18. D. Moner, J. A. Maldonado, D. Bosca, J. T. Fernadez, C. Angulo, P. Crespo, P. J. Vivancos & M. Robles. (2006). Archetype-Based Semantic Integration and Standardization of Clinical Data. Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 5141-5144. 
    19. W. P. Lee, J. Y. Huang, H. H. Chang, K. T. Lee & C. T. Lai. (2017). Predicting Drug Side Effects Using Data Analytics and the Integration of Multiple Data Sources. IEEE Access, 5, 20449-20462. 
    20. Y. S. Jeong. (2016). A Study of An Efficient Clustering Processing Scheme of Patient Disease Information for Cloud Computing Environment. Journal of Convergence for Information Technology, 6(1), 33-38. 
    21. I. Y. Jung, S. G. Kim, D. Y. Lee & Y. H. Lee. (2016). Science and Technology Policy Institute. Emerging Healthcare Innovations Driven by Data and Its Policy Implications. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 이용한 콘텐츠
이 논문과 함께 출판된 논문 + 더보기