본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of electrochemical science and technology   v.9 no.2, 2018년, pp.93 - 98   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Electrodeposition of Mn-Ni Oxide/PEDOT and Mn-Ni-Ru Oxide/PEDOT Films on Carbon Paper for Electro-osmotic Pump Electrode

Baek, Jaewook   (Department of Chemistry, Sogang University  ); Shin, Woonsup   (Department of Chemistry, Sogang University  );
  • 초록

    $MnO_2$ , a metal oxide used as an electrode material in electrochemical capacitors (EDLCs), has been applied in binary oxide and conducting polymer hybrid electrodes to increase their stability and capacitance. We developed a method for electrodepositing Mn-Ni oxide/PANI, Mn-Ni oxide/PEDOT, and Mn-Ni-Ru oxide/PEDOT films on carbon paper in a single step using a mixed bath. Mn-Ni oxide/PEDOT and Mn-Ni-Ru oxide/PEDOT electrodes used in an electro-osmotic pump (EOP) have shown better efficiency compared to Mn-Ni oxide and Mn-Ni oxide/PANI electrodes through testing in water as a pumping solution. EOP using a Mn-Ni-Ru oxide/PEDOT electrode was also tested in a 0.5 mM $Li_2SO_4$ solution as a pumping solution to confirm the effect of the $Li^+$ insertion/de-insertion reaction of Ruthenium oxide on the EOP. Experimental results show that the flow rate increases with the increase in current in a 0.5 mM $Li_2SO_4$ solution compared to that obtained when water was used as a pumping solution.


  • 주제어

    Electro-osmotic pump (EOP)  . Supercapacitor  . Manganese oxide  . Nickel oxide  . Ruthenium oxide  .

  • 이미지/표/수식 (8)

    • Calculated capacitance of each electrode in 0.5 M Na2SO4electrolyte.
    • Current variations and flow rates of Mn-Ni oxide, Mn-Ni oxide/PANI, and Mn-Ni oxide/PEDOT electrode used in EOPs in water as a pumping solution.
    • Pumping solution effects of Mn-Ni-Ru oxide/PEDOT electrode (4) used in EOPs.

    논문관련 이미지

  • 참고문헌 (30)

    1. W. Shin, E. Zhu, R. K. Nagarale, C. H. Kim, J. M. Lee, S. J. Shin, A. Heller, Anal. Chem., 2011, 83(12), 5023-5025. 
    2. A. Nishino, J. Power Sources, 1996, 60(2), 137-147. 
    3. E. Faggioli, P. Rena, V. Danel, X. Andrieu, R. Mallant, H. Kahlen, J. Power Sources, 1999, 84(2), 261-269. 
    4. A. Burke, J. Power Sources, 2000, 91(1), 37-50. 
    5. P. Simon, Y. Gogotsi, Nat. Mater., 2008, 7(11), 845-854. 
    6. Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev., 2016, 45(21), 5925-5950. 
    7. C. D. Lokhande, D. P. Dubal, O.-S. Joo, Curr. Appl. Phys., 2011, 11(3), 255-270. 
    8. W. Deng, X. Ji, Q. Chen, C. E. Banks, RSC Adv., 2011, 1(7), 1171-1178. 
    9. G. A. Snook, P. Kao, A. S. Best, J. Power Sources, 2011, 196(1), 1-12. 
    10. L. Nyholm, G. Nystrom, A. Mihranyan, M. Stromme, Adv. Mater., 2011, 23(33), 3751-3769. 
    11. L.-M. Huang, H.-Z. Lin, T.-C. Wen, A. Gopalan, Electrochim. Acta., 2006, 52(3), 1058-1063. 
    12. R. Liu, S. B. Lee, J. Am. Chem. Soc., 2008, 130(10), 2942-2943. 
    13. J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X. W. Lou, Adv. Mater., 2012, 24(38), 5166-5180. 
    14. D. Szymanska, I. A. Rutkowska, L. Adamczyk, S. Zoladek, P. J. Kulesza, J. Solid State Electrochem., 2010, 14(11), 2049-2056. 
    15. B. Babakhani, D. G. Ivey, Electrochim. Acta., 2010, 55(12), 4014-4024. 
    16. S. C. Pang, M. A. Anderson, T. W. Chapman, J. Electrochem. Soc., 2000, 147(2), 444-450. 
    17. M. Ghaemi, L. Binder, J. Power Sources, 2002, 111(2), 248-254. 
    18. Y.-S. Chen, C.-C. Hu, Electrochem. Solid State Lett., 2003, 6(10), A210-A213. 
    19. Z. Sun, S. Firdoz, E. Ying-Xuan Yap, L. Li, X. Lu, Nanoscale, 2013, 5(10), 4379-4387. 
    20. H.-M. Lee, K. Lee, C.-K. Kim, Materials, 2014, 7, 265-274. 
    21. P.-Y. Chuang, C.-C. Hu, Mater. Chem. Phys., 2005, 92(1), 138-145. 
    22. D.-S. Lin, C.-T. Chou, Y.-W. Chen, K.-T. Kuo, S.-M. Yang, J. Appl. Polym. Sci., 2006, 100(5), 4023-4044. 
    23. L.-J. Bian, F. Luan, S.-S. Liu, X.-X. Liu, Electrochim. Acta., 2012, 64, 17-22. 
    24. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, Adv. Mater., 2000, 12(7), 481-494. 
    25. Z. Liu, C. Tang, P. Chen, Q. Yu, W. Li, RSC Adv., 2014, 4(51), 26881-26887. 
    26. Y. R. Ahn, M. Y. Song, S. M. Jo, C. R. Park, D. Y. Kim, Nanotechnology, 2006, 17(12), 2865. 
    27. D. Susanti, D.-S. Tsai, Y.-S. Huang, Sci. Adv. Mater., 2010, 2(4), 552-559. 
    28. Y.-Y. Hu, Z. Liu, K.-W. Nam, O. J. Borkiewicz, J. Cheng, X. Hua, M. T. Dunstan, X. Yu, K. M. Wiaderek, L.-S. Du, K. W. Chapman, P. J. Chupas, X.-Q. Yang, C. P. Grey, Nat. Mater., 2013, 12(12), 1130-1136. 
    29. J. Jung, M. Cho, M. Zhou, AIP Adv., 2014, 4(1), 017104. 
    30. A. S. Hassan, A. Navulla, L. Meda, B. R. Ramachandran, C. D. Wick, J. Phys. Chem. C, 2015, 119(18), 9705-9713. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기