본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

上下水道學會誌 = Journal of Korean Society of Water and Wastewater   v.32 no.3, 2018년, pp.243 - 251   KCI
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

영가철 나노입자가 충진된 컬럼을 이용한 질산성 질소 환원 성능 평가
Evaluation of nanoscale zero valent iron filled column for nitrate reduction

홍영표   (서울과학기술대학교 환경공학과  ); 서영교   (서울과학기술대학교 환경공학과  ); 김효원   (서울과학기술대학교 환경공학과  ); 황유훈   (서울과학기술대학교 환경공학과  );
  • 초록

    In this study, we compared the MZVI (Microscale Zero-Valent Iron) and NZVI (Nanoscale Zero-Valent Iron) for reactivity and mobility in a column to reduce nitrate, which is a major pollutant in Korea, and investigated the effect of operational parameters on the NZVI filled column. For the comparison of MZVI and NZVI, samples were collected for 990 minutes using fractionator in the similar operation conditions (MZVI 10g, NZVI 2g). The nitrate reduction efficiency of NZVI was about 5 times higher than that of MZVI, which was about 7.45% and 38.75% when using MZVI and NZVI, respectively. In the mobility experiment, the MZVI descended due to gravity while NZVI moved up with water flow due to its small size. Furthermore, the optimum condition of NZVI filled column was determined by changing the flow rate and pH. The amount of Fe ions was increased as the pH of the nitrate solution was lowered, and the nitrate removal rate was similar due to the higher yield of hydroxyl groups. The removal rate of nitrate nitrogen was stable while flow rate was increased from 0.5 mL/min to 2.0 mL/min (empty bed contact time: 2.26 min to 0.57 min). NZVI has a high reduction rate of nitrate, but it also has a high mobility, so both of reactivity and mobility need to be considered when NZVI is applied for drinking water treatment.


  • 주제어

    마이크로영가철  . 나노영가철  . 질산성 질소  . 수처리 컬럼  .

  • 참고문헌 (23)

    1. Li, S., Wang, W., Yan, W., Zhang, W. (2014a). Nanoscale zero-valent iron (nZVI) for the treatment of concentrated Cu(ii) wastewater: a field demonstration, Environ. Sci. Process. Impacts, 16(3), 524-533. 
    2. Li, S., Wang, W., Liu, Y., Zhang, W. (2014b). Zero-valent iron nanoparticles (nZVI) for the treatment of smelting wastewater: A pilot-scale demonstration, Chem. Eng. J., 254, 115-123. 
    3. Mueller, N.C., Braun, J., Bruns, J., Cernik, M., Rissing, P., Rickerby, D., Nowack, B. (2012). Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe, Environ. Sci. Pollut. Res. Int., 19(2), 550-558. 
    4. O'Carroll, D., Sleep, B., Krol, M., Boparai, H., Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation, Adv. Water Resour., 51, 104-122. 
    5. Park, H.S., Park, Y.M., Jo, Y.S., Oh, S.K., Kang, S.Y., Yoo, K.M., Lee, S.J., Choi, Y.S., Lee, S.H. (2007). Reduction of nitrate using nanoscale zero-valent iron supported on the ion-exchange resin, J. Korean Soc. Water Wastewater, 21, 679-687. 
    6. Ruiz-Torres, C.A., Araujo-Martinez, R.F., Martinez-Castanon, G.A., Morales-Sanchez, J.E., Guajardo-Pacheco, J.M., Gonzalez-Hernandez, J., Lee, T.J., Shin, H.S., Hwang, Y., Ruiz. F. (2018). Preparation of air stable nanoscale zero valent iron functionalized by ethylene glycol without inert condition, Chem. Eng. J., 336, 112-122. 
    7. Wang, C.M., Baer, D.R., Amonette, J.E., Engelhard, M.H., Antony, J., Qiang, Y. (2009). Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles, J. Am. Chem. Soc., 131(25), 8824-8832 
    8. Yan, W., Herzing, A. A., Kiely, C. J., & Zhang, W. (2010). Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water, J. Contam. Hydrol., 118(3), 96-104. 
    9. Kumar, D., Roy, R., Parashar, A., Raichur, A.M., Chandrasekaran, N., Mukherjee, A., Mukherjee, A. (2017). Toxicity assessment of zero valent iron nanoparticles on Artemia salina, Environ. Toxicol., 32(5), 1617-1627. 
    10. Li, A., Tai, C., Zhao, Z.S., Wang, Y.W., Zhang, Q.H., Jiang, G.B., Hu, J.T., (2007). Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles, Environ. Sci. Technol., 41, 6841-6846. 
    11. Crane, R.A., Scott, T.B. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology, J. Hazard Mater., 211-212, 112-125. 
    12. Fu, F., Dionysiou, D.D., Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: A review, J. Hazard. Mater., 267(Supplement C), 194-205. 
    13. Gomes, H.I., Dias-Ferreira, C., Ottosen, L.M., Ribeiro, A.B. (2014). Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants, J. Colloid Interface Sci., 433, 189-195. 
    14. Hwang, Y.H., Kim, D.G., Ahn, Y.T., Moon, C.M., Shin, H.S. (2010). Fate of nitrogen species in nitrate reduction by nanoscale zero valent iron and characterization of the reaction kinetics, Water Sci. Technol., 61(3), 705-712. 
    15. Hwang, Y.H., Kim, D.G., Shin, H.S. (2011). Mechanism study of nitrate reduction by nano zero valent iron, J. Hazard. Mater., 185(2-3), 1513-1521. 
    16. Hwang, Y., Lee, Y.C., Mines, P.D., Huh, Y.S., Andersen, H.R. (2014). Nanoscale zero-valent iron (nZVI) synthesis in a Mg-aminoclay solution exhibits increased stability and reactivity for reductive decontamination, Appl. Catal. B Environ., 147, 748-755. 
    17. Jang, M.H., Lim, M., Hwang, Y.S. (2014). Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation, Environ. Health Toxicol., 29, e2014022. 
    18. Kocur, C.M., Chowdhury, A.I., Sakulchaicharoen, N., Boparai, H.K., Weber, K.P., Sharma, P., Krol, M.M., Austrins, L., Peace, C., Sleep, B.E., O'Carroll, D.M. (2014). Characterization of nZVI mobility in a field scale test, Environ. Sci. Technol., 48(5), 2862-2869. 
    19. Krol, M.M., Oleniuk, A.J., Kocur, C.M., Sleep, B.E., Bennett, P., Xiong, Z., O'Carroll, D.M. (2013). A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection, Environ. Sci. Technol., 47(13), 7332-7340. 
    20. Bennett, P., He, F., Zhao, D., Aiken, B., Feldman, L. (2010). In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer, J. Contam. Hydrol., 116(1), 35-46. 
    21. Cao, J.S., Elliott, D., Zhang, W.X. (2005). Perchlorate reduction by nanoscale iron particles, J. Nanopart. Res., 7, 499-506. 
    22. APHA, AWWA, WEF. (2005). Standard methods for the examination of water and wastewater, 21st ed., APHA-AWWA-WEF, Washington, D.C. 
    23. Adeleye, A.S., Conway, J.R., Garner, K., Huang, Y., Su, Y., Keller, A.A. (2016). Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability, Chem. Eng. J., 286, 640-662. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기