본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Ocean systems engineering v.8 no.2, 2018년, pp.167 - 182  

Simulation of viscous and inviscid rayleigh-taylor instability with surface tension by using MPS

Kim, Kyung Sung   (School of Naval Architecture and Ocean Engineering, Tongmyong University  ); Kim, Moo Hyun   (Department of Ocean Engineering, Texas A&M University  );
  • 초록

    RTI (Rayleigh-Taylor instability) is investigated by a multi-liquid MPS (Moving Particle Semi-implicit) method for both viscous and inviscid flows for various density differences, initial-disturbance amplitudes, viscosities, and surface tensions. The MPS simulation can be continued up to the late stage of high nonlinearity with complicated patterns and its initial developments agree well with the linear theoretical results. According to the relevant linear theory, the difference between inviscid and viscous fluids is the rising velocity at which upward-mushroom-like RTI flow with vortex formation is generated. However, with the developed MPS program, significant differences in both growing patters and developing speeds are observed. Also, more dispersion can be observed in the inviscid case. With larger Atwood (AT) number, stronger RTI flows are developed earlier, as expected, with higher potential-energy differences. With larger initial disturbances, quite different patterns of RTI-development are observed compared to the small-initial-disturbance case. If AT number is small, the surface tension tends to delay and suppress the RTI development when it is sufficiently large. Interestingly, at high AT number, the RTI-suppressions by increased surface tension become less effective.


  • 주제어

    RTI (Rayleigh-Taylor instability) .   MPS (Moving Particle Semi-implicit) simulation .   Atwood number .   viscous vs.   inviscid .   initial disturbance .   surface tension .   RTI speed/pattern .   mushroom-like RTI flows .   comparison to linear theory.  

  • 참고문헌 (24)

    1. Baker, G., et al. (1993), "Singularity formation during Rayleigh-Taylor instability", J. Fluid Mech., 252, 51-78. 
    2. Bakti, F.P., Kim, M.H., Kim, K.S. and Park, J.C. (2016), "Comparative study of standard WC-SPH and MPS solvers for free-surface academic problems", J. Offshore Polar., 26(3), 235-243. 
    3. Chandrasekhar, S. (2013), Hydrodynamic and hydromagnetic stability, Courier Corporation. 
    4. Cowley, S.J., et al. (1999), "On the formation of Moore curvature singularities in vortex sheets", J. Fluid Mech., 378, 233-267. 
    5. Gotoh, H. (2009), Lagrangian Particle Method-Advanced Technology for Numerical Wave Flume. The Nineteenth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers. 
    6. Jeong, S.M., et al. (2013), "Numerical prediction of oil amount leaked from a damaged tank using two-dimensional moving particle simulation method", Ocean Eng., 69, 70-78. 
    7. Khayyer, A. and Gotoh, H. (2011), "Enhancement of stability and accuracy of the moving particle semi-implicit method", J. Comput. Phys., 230(8), 3093-3118. 
    8. Khayyer, A. and Gotoh, H. (2013), "Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratios", J. Comput. Phys., 242, 211-233. 
    9. Kim, K.S., et al. (2014), "Development of moving particle simulation method for multiliquid-layer sloshing", Math. Probl. Eng. 
    10. Kim, K.S. and Kim, M.H. (2017), "Simulation of Kelvin Helmholtz instability by using MPS method" Ocean Eng., 130, 531-541. 
    11. Kim, K.S. and Kim, M.H. and Park, J.C. (2015), "Simulation of multi-liquid-layer sloshing with vessel motion by using moving particle simulations", J. Offshore Mech. Arct., 137(5), 
    12. Koshizuka, S. and Oka, Y. (1996), "Moving-particle semi-implicit method for fragmentation of incompressible fluid", Nuclear Sci. Eng., 123(3), 421-434. 
    13. Krasny, R. (1986), "Desingularization of periodic vortex sheet roll-up", J. Comput. Phys., 65(2), 292-313. 
    14. Lee, B.H., et al. (2011), "Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads", Comput. Method. Appl. M., 200(9), 1113-1125. 
    15. Mikaelian, K.O. (1996), "Rayleigh-Taylor instability in finite-thickness fluids with viscosity and surface tension", Phys. Rev., 54(4), 3676. 
    16. Moore, D. (1979), "The spontaneous appearance of a singularity in the shape of an evolving vortex sheet", Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society. 
    17. Nomura, K., et al. (2001), "Numerical analysis of droplet breakup behavior using particle method", J. Nuclear Sci. Technol., 38(12), 1057-1064. 
    18. Sharp, D.H. (1984), "An overview of Rayleigh-Taylor instability", Physica D: Nonlinear Phenomena, 12(1), 3-18. 
    19. Shirakawa, N., et al. (2001), "Analysis of the void distribution in a circular tube with the two-fluid particle interacthion method", J. Nuclear Sci. Technol., 38(6), 392-402. 
    20. Taylor, G. (1950), "The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I", Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society. 
    21. Tryggvason, G., et al. (1991), "Fine structure of vortex sheet rollup by viscous and inviscid simulation", J. Fluid. Eng., 113(1), 31-36. 
    22. Tryggvason, G. and Unverdi, S.O. (1990), "Computations of three- dimensional Rayleigh-Taylor instability", Phys. Fluids A: Fluid Dynam., (1989-1993) 2(5), 656-659. 
    23. Waddell, J., et al. (2001), "Experimental study of Rayleigh-Taylor instability: low Atwood number liquid systems with single-mode initial perturbations", Phys. Fluids., (1994-present) 13(5), 1263-1273 
    24. Forbes, L.K. (2009), "The Rayleigh-Taylor Instability for inviscid and viscous fluids", J. Eng. Math., 65(3), 273-290 

 저자의 다른 논문

  • Kim, Kyung Sung (7)

    1. 2017 "Study for Effects of Sloshing Effect Reduction Device on Vessel Motion" Journal of advanced research in ocean engineering 3 (3): 149~157    
    2. 2018 "고체 입자형 MPS법을 이용한 토사물 퇴적 시뮬레이션" 海洋環境安全學會誌 = Journal of the Korean society of marine environment & safety 24 (1): 119~125    
    3. 2018 "Preliminary optimal configuration on free standing hybrid riser" International journal of naval architecture and ocean engineering 10 (3): 250~258    
    4. 2017 "퇴적 시뮬레이션을 위한 입자 기반 프로그램 개발" 해양환경안전학회 2017년도 추계학술발표회 2017 (11): 14~14    
    5. 2017 "해양 재난 방지를 위한 가변형 쇄파 장치에 관한 연구" 해양환경안전학회 2017년도 추계학술발표회 2017 (11): 91~91    
    6. 2017 "6자유도 부유체 시뮬레이터 개발" 해양환경안전학회 2017년도 추계학술발표회 2017 (11): 260~260    
    7. 2018 "댐 붕괴에 의한 토양 교란 시뮬레이션" 한국항해항만학회 2018년도 추계학술대회 2018 (11): 210~211    

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기