본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

한국정보전자통신기술학회논문지 = Journal of Korea institute of information, electronics, and communication technology v.11 no.2, 2018년, pp.175 - 180   KCI
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

몰포러지 물체인식 알고리즘
Morphological Object Recognition Algorithm

최종호   (Department of IoT Electronic Engineering, Kangnam University  );
  • 초록

    본 논문에서는 몰포러지 연산만을 적용하여 특징을 추출하고, 물체를 인식하는 알고리즘을 제안하였다. 특징추출에서 사용한 몰포러지 연산은 에로전과 다이레이션, 에로전과 다이레이션을 연계한 오프닝과 크로우징, 몰포러지 연산을 이용한 에지 및 스케리톤 검출 연산 등이다. 특징을 기반으로 물체를 인식하는 과정에서는 차원을 축소하기 위해서 풀링 연산을 사용하였다. 다양한 형태소 중에서 $3{\times}3$ Rhombus, $3{\times}3$ Square, $5{\times}5$ Circle 형태소를 임의로 선정하여 몰포러지 연산을 수행하였다. 무작위 인터넷 영상을 대상으로 행한 실험을 통해 물체인식 분야에서 유용한 알고리즘으로 적용될 수 있다는 것을 확인하였다.


    In this paper, a feature extraction and object recognition algorithm using only morphological operations is proposed. The morphological operations used in feature extraction are erosion and dilation, opening and closing combining erosion and dilation, and morphological edge and skeleton detection operation. In the process of recognizing an object based on features, a pooling operation is applied to reduce the dimension. Among various structuring elements, $3{\times}3$ rhombus, $3{\times}3$ square, and $5{\times}5$ circle are arbitrarily selected in morphological operation process. It has confirmed that the proposed algorithm can be applied in object recognition fields through experiments using Internet images.


  • 주제어

    Dilation .   Erosion .   Feature Extraction .   Morphology .   Object Recognition .   Pooling.  

  • 참고문헌 (8)

    1. Serra, J., Image Analysis and Mathe- matical Morphology, Vol.1, Academic Press, New York, 1982. 
    2. Serra, J., "Introduction to Mathematical Morphology,"Computer Vision, Graphics, and Image Processing, Vol.35, pp. 283-305, 1986. 
    3. Pitas, I. and Venetsanopoulos, A. N., "Morphological Shape Decomposition," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.12, No.1, pp. 38-45, 1990. 
    4. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks", Advances in Neural Information processing Systems 25, NIPS, 2012. 
    5. H. Lee, R. Grosse, R. Ranganath, and A.Y. Ng., "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations", Proceedings of the 26th Annual International Conference on Machine Learning, ACM, 2009. 
    6. Y. LeCun, K. Kavukcuoglu, and C. Farabet, "Convolutional networks and applications in vision", International Symposium in Circuits and Systems (ISCAS), IEEE, 2010. 
    7. D. C. Ciresan, A. Giusti, L. M. Gam bardella, and J. Schmidhuber, "Deep neural networks segment neuronal membranes in electron microscopy images," In NIPS, 2012. 
    8. Maragos, P. and Schafer, R.W., "Morpho- logical Skeleton Representation and Coding of Binary Images," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.ASSP-34, No.5, pp. 1228-1244, 1986. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기