본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of applied biological chemistry v.61 no.2, 2018년, pp.135 - 139   KCI
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Inhibitory effects of Synurus excelsus and Weigela subsessilis on aldose reductase and HPLC-UV analysis of scopolin, scopoletin, and quercetin

Quilantang, Norman G.   (Department of Integrative Plant Science, Chung-Ang University  ); Lee, Ju Sung   (Department of Integrative Plant Science, Chung-Ang University  ); Ryu, Seo Hyun   (Seoul Science High School  ); Park, Se Hoon   (Seoul Science High School  ); Byun, Jae Sang   (Seoul Science High School  ); Chun, Je Sung   (Seoul Science High School  ); Jacinto, Sonia D.   (Institute of Biology, University of the Philippines  ); Lee, Sanghyun   (Department of Integrative Plant Science, Chung-Ang University  );
  • 초록

    The inhibition of aldose reductase (AR) has been shown to prevent the progression of the many complications associated with diabetic hyperglycemia. Several compounds purified from various plant sources have exhibited potent inhibition against AR. In this study, the inhibitory effects of the methanol extracts of the flowers of Synurus excelsus and Weigela subsessilis on AR were determined in vitro. Scopolin and scopoletin are coumarins isolated from the flowers of S. excelsus and W. subsessilis; and quercetin is a known AR inhibitor present in many flowers. To determine and quantify their presence in both plants, HPLC-UV analysis of all three compounds was performed. S. excelsus and W. subsessilis showed potent inhibition against AR having $IC_{50}$ values of 0.17 and $0.14{\mu}g/mL$ , respectively. The concentration of scopolin in S. excelsus and W. subsessilis were 34.71 and 174.14 mg/g extract, respectively. Scopoletin was detected in S. excelsus at 3.41 mg/g extract, whereas quercetin was not detected in both plants. This study shows that S. excelsus and W. subsessilis exhibited promising AR inhibitory effects and are both sources of coumarins.


  • 주제어

    Aldose reductase .   Quercetin .   Scopoletin .   Scopolin .   Synurus excelsus .   Weigela subsessilis.  

  • 참고문헌 (25)

    1. Lee J, Ryu H-S, Rodriguez JP, Lee S (2017) Aldose reductase inhibitory activity of quercetin from the stems of Rhododendron mucronulatum for. albiflorum. J Appl Biol Chem 60: 29-33 
    2. Hayman S, Kinoshita JJ (1965) Isolation and properties of lens aldose reductase. Biol Chem 240: 877-882 
    3. Brownlee M (2001) The pathobiology of diabetic complications: a unifying mechanism. Nature 414: 813-820 
    4. Tang WH, Martin K, Hwa J (2012) Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharmacol 3: 1-8 
    5. Grewal AS, Bhardwaj S, Pandita D, Lather V, Sekhon BS (2016) Update on aldose reductase inhibitors for management of diabetic complications and non-diabetic diseases. Mini-Rev Med Chem 16: 120-162 
    6. Lee YM, Kim YS, Kim JH, Kim JS (2011) Screening of Korean herbal medicines with inhibitory effect on aldose reductase. Kor J Pharmacogn 42: 161-168 
    7. Nazaruk J, Borzym-Kluczyk M (2015) The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem Rev 14: 675-690 
    8. Lee MS, Lee CM, Cha EY, Thuong PT, Bae KH, Song IS, Noh SM, Sul JY (2010) Activation of AMP-activated protein kinase on human gastric cancer cells by apoptosis induced by corosolic acid isolated from Weigela subsessilis. Phytother Res 24: 1857-1861 
    9. Na M, Thuong PT, Hwang IH, Bae K, Kim BY, Osada H, Ahn S (2010) Protein tyrosinase 1B inhibitory activity of 24-norursane triterpenes isolated from Weigela subsessilis. Phytother Res 24: 1716-1719 
    10. Thuong PT, Na MK, Su ND, Seong RS, Lee YM, Sok DE, Bae KH (2005) Inhibitory effect of coumarins from Weigela subsessilis on low density lipoprotein oxidation. Biol Pharm Bull 28: 1095-1097 
    11. Brownlee M (2004) Biology and molecular cell biology of diabetic complications. Diabetes 54: 1615-1625 
    12. Robinson Jr. WG, Kador PF, Kinoshita JH (1983) Retinal capillaries: basement membrane thickening by galactosemia prevented with aldose reductase inhibitor. Science 221: 1177-1179 
    13. Engerman RL, Kern TS, Larson ME (1994) Nerve conduction and aldose reductase inhibition during 5 years of diabetes or galactosemia in dogs. Diabetologia 37: 141-144 
    14. Drel VR, Pacher P, Ali TK, Shin J, Julius U, El-Remessy AB, Obrosova IG (2008) Aldose reductase inhibitor fidarestat counteracts diabetesassociated cataract formation, retinal oxidative-nitrosative stress, glial activation, and apoptosis. Int J Mol Med 21: 667-676 
    15. Oates PJ, Mylari BL (1999) Aldose reductase inhibitors: therapeutic implications for diabetic complications. Expert Opin Investig. Drugs 8: 2095-2119 
    16. Niyeldt R, Van Nood E, Van Hoorn EC, Boelens P, Van Norren K, Van Leeuwen PAM (2001) Flavonoids: a review of probable mechanism of action and potential applications. Am J Clin Nutr 74: 418-425 
    17. Varman SD, Mikuni I, Kinoshita JH (1975) Flavonoids as inhibitors of lens aldose reductase. Science 188: 1215-1216 
    18. Shin HT, Yoo ST, Kim BD, Yi MH (2010) Dispersion of vascular plant in Mt. Huiyangsan, Korea. J Kor Nature 3: 1-10 
    19. Nam JH, Choi SJ, Lee KR (2004) Phytochemical constituents of Synurus excelsus. Kor J Pharmacogn 35: 116-121 
    20. Kador P (1988) The role of aldose reductase in the development of diabetic complications. Med Res Rev 8: 325-352 
    21. Lee K, Yang MC, Lee KH, Choi SY, Lee KR (2007) Phenolic constituents from the flowers of Synurus excelsus. Kor J Pharmacogn 38: 181-186 
    22. Pan R, Dai Y, Gao X, Xia Y (2009) Scopolin isolated from Erycibe obtusifolia Benth stems suppresses adjuvant-induced rat arthritis by inhibiting inflammation and angiogenesis. Int J Immunopharmacol 9: 859-869 
    23. Rollinger JM, Hornick A, Langer T, Stuppner H, Prast H (2004) Acetylcholinesterase inhibitory activity of scopolin and scopoletin discovered by virtual screening of natural products. J Med Chem 47: 6248-6254 
    24. Jung HA, Islam MDN, Kwon YS, Jin SE, Son YK, Park JJ, Sohn HS, Choi JS (2011) Extraction and identification of three major aldose reductase inhibitors from Artemisia montana. Food Chem Toxicol 49: 376-384 
    25. Rao AR, Veeresham C, Asres K (2013) In vitro and in vivo inhibitory activities of four Indian medicinal plant extracts and their major components on rat aldose reductase and the generation of advanced glycation endproducts. Phytother Res 27: 753-760 

 저자의 다른 논문

  • Lee, Ju Sung (4)

    1. 2017 "Quantitative Determination of Bakkenolide D in Petasites japonicus and Farfugium japonicum by HPLC/UV" Natural product sciences 23 (4): 270~273    
    2. 2018 "Content Analysis of Rutin in the Leaves of Boehmeria nivea Harvested in Different Regions of South Korea by HPLC-UV" Natural product sciences 24 (1): 36~39    
    3. 2018 "Determination of Silybin B in the Different Parts of Silybum marianum using HPLC-UV" Natural product sciences 24 (2): 82~87    
    4. 2018 "Simultaneous determination of methoxyflavones in selected Korean thistles" Journal of applied biological chemistry 61 (3): 227~232    
  • 이상현 (109)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
  • 한국응용생명화학회 : 저널
  • ScienceCentral : 저널
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기