본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Earthquakes and structures v.15 no.4, 2018년, pp.351 - 360   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Energy based design of a novel timber-steel building

Goertz, Caleb   (Read Jones Christoffersen Ltd.  ); Mollaioli, Fabrizio   (Department of Structural and Geotechnical Engineering, Sapienza University of Rome  ); Tesfamariam, Solomon   (School of Engineering, University of British Columbia  );
  • 초록

    Energy-based methodology is utilized to design novel timber-steel hybrid core wall system. The timber-steel core wall system consists of cross laminated timber (CLT), steel columns, angled brackets and t-stub connections. The CLT wall panels are stiff and strong, and ductility is provided through the steel t-stub connections. The structural system was modelled in SAP2000 finite element program. The hybrid system is explained in detail and validated using first principles. To evaluate performance of the hybrid core system, a 7-story building was designed using both forced-based design and energy based design (EBD) approaches. Performance of the structure was evaluated using 10 earthquakes records selected for 2500 return period and seismicity of Vancouver. The results clearly served as a good example of the benefits of EBD compared to conventional forced based design approaches.


  • 주제어

    energy-based design .   hybrid system .   cross laminated timber .   connection.  

  • 참고문헌 (54)

    1. Akiyama, H. (1985), Earthquake-Resistant Limit-State Design for Buildings, University of Tokyo Press. 
    2. Asiz, A. and Smith, I. (2011), "Connection system of massive timber elements used in horizontal slabs of hybrid tall buildings", J. Struct. Eng., 137 (11), 1390-1393. 
    3. Atkinson, G.M. and Goda, K. (2011), "Effects of seismicity models and new ground-motion prediction equations on seismic hazard assessment for four Canadian cities", Bull. Seismol. Soc. Am., 101(1), 176-189. 
    4. Baker, J.W. (2011), "Conditional mean spectrum: Tool for ground motion selection", J. Struct. Eng., 137(3), 322-331. 
    5. Benavent-Climent, A. (2011), "An energy-based method for seismic retrofit of existing frames using hysteretic dampers", Soil Dyn. Earthq. Eng., 31(10), 1385-96. 
    6. Bezabeh, M. (2014), "Lateral behaviour and direct displacement based design of a novel hybrid structure: Cross laminated timber infilled steel moment resisting frames", M.A.Sc. Thesis, School of Engineering, University of British Columbia, Canada. 
    7. Bezabeh, M., Tesfamariam, S. and Stiemer, S., (2015b), "Equivalent viscous damping for steel moment-resisting frames with cross-laminated timber infill walls", J. Struct. Eng., 142(1), 04015080. 
    8. Bezabeh, M., Tesfamariam, S., Popovski, M., Goda, K. and Stiemer, S.F. (2017), "Seismic base shear modification factors for timber-steel hybrid structures: A collapse risk assessment approach", ASCE J. Struct. Eng., 143(10), 04017136-1-12. 
    9. Bezabeh, M., Tesfamariam, S., Stiemer, S., Popovski, M. and Karacabeyli, E. (2015a), "Direct displacement based design of a novel hybrid structure: steel moment-resisting frames with cross laminated timber infill walls", Earthq. Spectra, 32(3), 1565-1585. 
    10. Blass, H.J. and Fellmoser, P. (2004), "Design of solid wood panels with cross layers", Proceedings of the 8th World Conference on Timber Engineering, Lahti, Finland, June. 
    11. Cheng, Y., Lucchini, A. and Mollaioli, F. (2014), "Proposal of new ground-motion prediction equations for elastic input energy spectra", Earthq. Struct., 7(4), 485-510. 
    12. Cheng, Y., Lucchini, A. and Mollaioli, F. (2015), "Correlation of elastic input energy equivalent velocity spectral values", Earthq. Struct., 8(5), 957-976. 
    13. Choi, H. and Kim, J. (2005), "Energy-based seismic design of buckling-restrained braced frames using hysteretic energy spectrum", Eng. Struct., 28, 304-311. 
    14. Choi, H. and Kim, J. (2009), "Evaluation of seismic energy demand and its application on design of buckling-restrained braced frames", Struct. Eng. Mech., 31(1), 93-112. 
    15. Choi, H., Kim, J. and Chung, L. (2006), "Seismic design of buckling-restrained braced frames based on a modified energybalance concept", Can. J. Civil Eng., 33(10), 1251-1260. 
    16. CISC (2010), Handbook of Steel Construction, 10th Edition, CSA S16-09, Quadratone Graphics Ltd., Toronto. 
    17. CSI (2013), SAP2000 Linear and Nonlinear Static and Dynamic Analysis and Design of Three-Dimensional Structures: Basic Analysis Reference Manual, Berkeley, USA. 
    18. Decanini, L.D. and Mollaioli, F. (1998), "Formulation of elastic earthquake input energy spectra", Earthq. Eng. Struct. Dyn., 27, 1503-1522. 
    19. Decanini, L.D. and Mollaioli, F. (2001), "An energy-based methodology for the assessment of seismic demand", Soil Dyn. Earthq. Eng., 21(2), 113-137. 
    20. Dickof, C. (2013), "CLT infill panels in steel moment resisting frames as a hybrid seismic force resisting system", Masters Thesis, University of British Columbia. 
    21. Dickof, C., Stiemer, S.F., Bezabeh, M.A. and Tesfamariam, S. (2014), "CLT-steel hybrid system: ductility and overstrength values based on static pushover analysis", ASCE J. Perform. Constr. Facil., 28(6), A4014012. 
    22. Donaire-A vila, J., Benavent-Climent, A., Lucchini, A. and Mollaioli, F. (2017), "Energy-based seismic design methodology: a preliminary approach", 16th World Conference on Earthquake Engineering, 16WCEE 2017, Santiago Chile, January. 
    23. Donaire-A'vila, J., Mollaioli, F., Lucchini, A. and Benavent-Climent, A. (2015), "Intensity measures for the seismic response prediction of mid-rise buildings with hysteretic dampers", Eng. Struct., 102, 278-295. 
    24. Dowell, R.K., Seible, F. and Wilson, E.L. (1998), "Pivot hysteresis model for reinforced concrete members", ACI Struct. J., 95(5), 607-617. 
    25. FEMA (Federal Emergency Management Agency) (2009), "Quantification of building seismic performance factors", Technical Report P695, Applied Technology Council, Redwood City, California. 
    26. FEMA (Federal Emergency Management Agency) (2012), "Seismic performance assessment of buildings volume 1-methodology", Technical Report FEMA-P58, Washington, DC. 
    27. Fragiacomo, M., Dujic, B. and Sustersic, I. (2011), "Elastic and ductile design of multi-storey cross-lam massive wooden buildings under seismic actions", Eng. Struct., 33(11), 3043-3053. 
    28. Ghobarah, A. (2001), "Performance-based design in earthquake engineering: State of development", Eng. Struct., 23, 878-884. 
    29. Ghosh, S., Adam, F. and Das, A. (2009), "Design of steel plate shear walls considering inelastic drift demand", J. Constr. Steel Res., 65(7), 1431-1437. 
    30. Goertz, C. (2016), "Energy based seismic design of a multi-storey hybrid building: Timber steel core walls", Masters Dissertation, University of British Columbia. 
    31. Green, M. and Karsh, J.E. (2012), Tall Wood-The Case for Tall Wood Buildings, Wood Enterprise Coalition, Vancouver, Canada. 
    32. Hachem, M. (2004), "BISPEC: Bidirectional linear and nonlinear spectra of earthquakes", University of California, Berkeley, USA. 
    33. KLH (2012), "Technical characteristics of CLT", Retrieved from http://www.klhuk.com/media/29233/technicalcharacteristics.pdf 
    34. Leelataviwat, S., Goel, S.C. and Stojadinovic, B. (2002), "Energybased seismic design of structures using yield mechanism and target drift", J. Struct. Eng., 128(8), 1046-1054. 
    35. Lopez-Almansa, F., Edgar Segues, E. and Cantalapiedra, I.R. (2015), "A new steel framing system for seismic protection of timber platform frame buildings. Implementation with hysteretic energy dissipators", Earthq. Eng. Struct. Dyn., 44(8), 1181-1202. 
    36. Loss, C., Piazza, M. and Zandonini, R. (2014), "Experimental tests of cross-laminated timber floors to be used in timber-steel hybrid structures", World Conference on Timber Engineering, Quebec City, Canada, August. 
    37. Loss, C., Piazza, M. and Zandonini, R. (2015a), "Connections for steel-timber hybrid prefabricated buildings. Part II: Innovative modular structures", Constr. Build. Mater., 122, 796-808. 
    38. Loss, C., Piazza, M. and Zandonini, R. (2015b), "Connections for steel-timber hybrid prefabricated buildings. Part I: experimental tests", Constr. Build. Mater., 122, 781-795. 
    39. NRC (National Research Council Canada) (2010), "National Building Code of Canada", National Research Council of Canada, Ottawa, Ontario. 
    40. Pang, W. and Rosowsky, D.V. (2009), "Direct displacement procedure for performance-based seismic design of mid-rise wood-framed structures", Earthq. Spectra, 25(3), 583-605. 
    41. Pei, S., van de Lindt, J., Popovski, M., Berman, J., Dolan, J., Ricles, J., Sause, R., Blomgren, H. and Rammer, D. (2014), "Cross-laminated timber for seismic regions: Progress and challenges for research and implementation", J. Struct. Eng., 142(4), E2514001. 
    42. Piluso, V. and Rizzano, G. (2008), "Experimental analysis and modelling of bolted T-stubs under cyclic loads", J. Constr. Steel Res., 64(6), 655-669. 
    43. Piluso, V., Faella, C. and Rizzano, G. (2001), "Ultimate behavior of bolted T-stubs. I: Theoretical model", J. Struct. Eng., 127(6), 686-693 
    44. Rinaldin, G., Amadio, C. and Fragiancomo, M. (2013), "A component approach for the hysteretic behaviour of connections in cross-laminated wooden structures", Earthq. Eng. Struct. Dyn., 42(13), 2023-2042. 
    45. Schneider, J., Karacabeyli, E., Popovski, M., Stiemer, S.F. and Tesfamariam, S. (2014), "Damage assessment of connections used in cross laminated timber subject to cyclic loads", ASCE J. Perform. Constr. Facil., 28(6), A4014008. 
    46. SEAOC Vision 2000 Committee (1995), Performance Based Seismic Engineering of Buildings, Sacramento, USA. 
    47. Shen, Y.L., Schneider, J., Tesfamariam, S., Stiemer, S.F. and Mu, Z.G. (2013), "Hysteresis behavior of bracket connection in cross-laminated timber shear walls", Constr. Build. Mater., 48, 980-991. 
    48. Smith, I. and Frangi, A. (2014), "Use of timber in tall multi-storey buildings", Structural Engineering Documents 13, International Association for Bridge and Structural Engineering. 
    49. Stiemer, S., Tesfamariam, S., Karacabeyli, E. and Propovski, M. (2012), "Development of steel-wood hybrid systems for buildings under dynamic loads", STESSA 2012, Behaviour of Steel Structures in Seismic Areas, Santiago, Chile, January. 
    50. Structurlam (2013), "Cross Laminated Timber Design Guide", Penticton, BC, Canada, http://structurlam.com/wpcontent/uploads /2015/09/CLT-design-guide-metric-Sept-2015-low-res.pdf 
    51. Tesfamariam, S., Stiemer, S.F., Bezabeh, M., Goertz, C., Popovski, M. and Goda, K. (2015), "Force based design guideline for timber-steel hybrid structures : steel moment resisting frames with CLT infill walls", UBC Faculty Research and Publications. 
    52. Tesfamariam, S., Stiemer, S.F., Dickof, C. and Bezabeh, M.A. (2014), "Seismic vulnerability assessment of hybrid steel-timber structure: steel moment resisting frames with CLT infill", J. Earthq. Eng., 18(6), 929-944. 
    53. Uang, C.M. and Bertero, V.V. (1990), "Evaluation of seismic energy in structures", Earthq. Eng. Struct. Dyn., 19(1), 77-90. 
    54. Zhang, X., Fairhurst, M. and Tannert, T. (2015), "Ductility estimation for a novel timber-steel hybrid system", J. Struct. Eng., 142(4), E4015001. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기