본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of the Korean Mathematical Society = 대한수학회지 v.55 no.6, 2018년, pp.1435 - 1458   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

MONOTONICITY OF THE FIRST EIGENVALUE OF THE LAPLACE AND THE p-LAPLACE OPERATORS UNDER A FORCED MEAN CURVATURE FLOW

Mao, Jing   (Faculty of Mathematics and Statistics Key Laboratory of Applied Mathematics of Hubei Province Hubei University  );
  • 초록

    In this paper, we would like to give an answer to Problem 1 below issued firstly in [17]. In fact, by imposing some conditions on the mean curvature of the initial hypersurface and the coefficient function of the forcing term of a forced mean curvature flow considered here, we can obtain that the first eigenvalues of the Laplace and the p-Laplace operators are monotonic under this flow. Surprisingly, during this process, we get an interesting byproduct, that is, without any complicate constraint, we can give lower bounds for the first nonzero closed eigenvalue of the Laplacian provided additionally the second fundamental form of the initial hypersurface satisfies a pinching condition.


  • 주제어

    Ricci-Hamilton flow .   mean curvature flow .   Laplace operator .   p-Laplace operator.  

  • 참고문헌 (23)

    1. J. Mao, Forced hyperbolic mean curvature flow, Kodai Math. J. 35 (2012), no. 3, 500-522. 
    2. J. Mao, Deforming two-dimensional graphs in $R^4$ by forced mean curvature flow, Kodai Math. J. 35 (2012), no. 3, 523-531. 
    3. J. Mao, A class of rotationally symmetric quantum layers of dimension 4, J. Math. Anal. Appl. 397 (2013), no. 2, 791-799. 
    4. J. Mao, Eigenvalue inequalities for the p-Laplacian on a Riemannian manifold and estimates for the heat kernel, J. Math. Pures Appl. (9) 101 (2014), no. 3, 372-393. 
    5. J. Mao, Eigenvalue estimation and some results on finite topological type, Ph.D. thesis, IST-UTL, 2013. 
    6. J. Mao, G. Li, and C. Wu, Entire graphs under a general flow, Demonstratio Math. 42 (2009), no. 3, 631-640. 
    7. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159. 
    8. J. Roth, A remark on almost umbilical hypersurfaces, Arch. Math. (Brno) 49 (2013), no. 1, 1-7. 
    9. K. Shiohama and H. W. Xu, Rigidity and sphere theorems for submanifolds, Kyushu J. Math. 48 (1994), no. 2, 291-306. 
    10. K. Shiohama and H. W. Xu, Rigidity and sphere theorems for submanifolds. II, Kyushu J. Math. 54 (2000), no. 1, 103-109. 
    11. L. Zhao, The first eigenvalue of p-Laplace operator under powers of the mth mean curvature flow, Results Math. 63 (2013), no. 3-4, 937-948. 
    12. B. Andrews, Contraction of convex hypersurfaces in Euclidean space, Calc. Var. Partial Differential Equations 2 (1994), no. 2, 151-171. 
    13. E. Cabezas-Rivas and C. Sinestrari, Volume-preserving flow by powers of the mth mean curvature, Calc. Var. Partial Differential Equations 38 (2010), no. 3-4, 441-469. 
    14. X. Cao, Eigenvalues of ($-{\Delta}+{\frac{R}{2}}$) on manifolds with nonnegative curvature operator, Math. Ann. 337 (2007), no. 2, 435-441. 
    15. X. Cao, First eigenvalues of geometric operators under the Ricci flow, Proc. Amer. Math. Soc. 136 (2008), no. 11, 4075-4078. 
    16. X. Cao, S. Hou, and J. Ling, Estimate and monotonicity of the first eigenvalue under the Ricci flow, Math. Ann. 354 (2012), no. 2, 451-463. 
    17. P. Freitas, J. Mao, and I. Salavessa, Spherical symmetrization and the first eigenvalue of geodesic disks on manifolds, Calc. Var. Partial Differential Equations 51 (2014), no. 3-4, 701-724. 
    18. R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306. 
    19. G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984), no. 1, 237-266. 
    20. G. Li and I. Salavessa, Forced convex mean curvature flow in Euclidean spaces, Manuscripta Math. 126 (2008), no. 3, 333-351. 
    21. G. H. Li, J. Mao, and C. X. Wu, Convex mean curvature flow with a forcing term in direction of the position vector, Acta Math. Sin. (Engl. Ser.) 28 (2012), no. 2, 313-332. 
    22. J.-F. Li, Eigenvalues and energy functionals with monotonicity formulae under Ricci flow, Math. Ann. 338 (2007), no. 4, 927-946. 
    23. L. Ma, Eigenvalue monotonicity for the Ricci-Hamilton flow, Ann. Global Anal. Geom. 29 (2006), no. 3, 287-292. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기