본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Smart structures and systems v.22 no.4, 2018년, pp.481 - 493   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Ultrasonic guided wave approach incorporating SAFE for detecting wire breakage in bridge cable

Zhang, Pengfei   (Institute of Advanced Manufacturing Engineering, Zhejiang University  ); Tang, Zhifeng   (Institute of Advanced Digital Technologies and Instrumentation, Zhejiang University  ); Duan, Yuanfeng   (College of Civil Engineering and Architecture, Zhejiang University  ); Yun, Chung Bang   (College of Civil Engineering and Architecture, Zhejiang University  ); Lv, Fuzai   (Institute of Advanced Manufacturing Engineering, Zhejiang University  );
  • 초록

    Ultrasonic guided waves have attracted increasing attention for non-destructive testing (NDT) and structural health monitoring (SHM) of bridge cables. They offer advantages like single measurement, wide coverage of acoustical field, and long-range propagation capability. To design defect detection systems, it is essential to understand how guided waves propagate in cables and how to select the optimal excitation frequency and mode. However, certain cable characteristics such as multiple wires, anchorage, and polyethylene (PE) sheath increase the complexity in analyzing the guided wave propagation. In this study, guided wave modes for multi-wire bridge cables are identified by using a semi-analytical finite element (SAFE) technique to obtain relevant dispersion curves. Numerical results indicated that the number of guided wave modes increases, the length of the flat region with a low frequency of L(0,1) mode becomes shorter, and the cutoff frequency for high order longitudinal wave modes becomes lower, as the number of steel wires in a cable increases. These findings were used in design of transducers for defect detection and selection of the optimal wave mode and frequency for subsequent experiments. A magnetostrictive transducer system was used to excite and detect the guided waves. The applicability of the proposed approach for detecting and locating wire breakages was demonstrated for a cable with 37 wires. The present ultrasonic guided wave method has been found to be very responsive to the number of brokenwires and is thus capable of detecting defects with varying sizes.


  • 주제어

    ultrasonic guided waves .   bridge cables with multi-wires .   SAFE .   dispersion curves .   magnetostrictive transducer .   wire breakage detection.  

  • 참고문헌 (38)

    1. Beena, K., Shruti, S., Sandeep, S. and Naveen, K. (2017), "Monitoring degradation in concrete filled steel tubular sections using guided waves", Smart Struct. Syst., 19(4), 371-382. 
    2. Bartels, K.A., Kwun, H. and Hanley, J.J. (1996), "Magnetostrictive sensors for the characterization of corrosion in rebars and prestressing strands", Nondestruct. Eval. Bridge. Highways, 2946, 40-50. 
    3. Bartoli, I., Marzani, A., Lanza Di Scalea, F. and Viola, E. (2006), "Modeling wave propagation in damped waveguides of arbitrary Cross-Section", J. Sound Vib., 295(3), 685-707. 
    4. Cho, S., Jo, H., Jang, S., Park, J., Jung, H., Yun, C., Spencer Jr, B.F. and Seo, J. (2010), "Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses", Smart Struct. Syst., 6(5-6), 461-480. 
    5. Ditri, J.J. and Rose, J.L. (1992), "Excitation of guided elastic wave modes in hollow cylinders by applied surface tractions", J. Appl. Phys., 72(7), 2589-2597. 
    6. Dorvash, S., Pakzad, S.N. and LaCrosse, E.L. (2014), "Statistics based localized damage detection using vibration response", Smart Struct. Syst., 14(2), 85-104. 
    7. Gazis, D.C. (1959), "Three-dimensional investigation of the propagation of waves in hollow circular cylinders. I. Analytical foundation", J. Acoust. Soc. Am., 31(5), 568-573. 
    8. Giurgiutiu, V., Reynolds, A. and Rogers, C.A. (1999), "Experimental investigation of E/M impedance health monitoring for spot-welded structural joints", J. Intel. Mat. Syst. Str., 10(10), 802-812. 
    9. Hayashi, T., Song, W.J. and Rose, J.L. (2003), "Guided wave dispersion curves for a bar with an arbitrary Cross-Section, a rod and rail example", Ultrasonics, 41(3), 175-83. 
    10. Huynh, T. and Kim, J. (2016), "Compensation of temperature effect on impedance responses of PZT interface for prestressloss monitoring in PSC girders", Smart Struct. Syst., 17(6), 881-901. 
    11. Jang, S., Jo, H., Cho, S., Mechitov, K., Rice, J.A., Sim, S., Jung, H., Yun, C., Spencer Jr., B.F. and Agha, G. (2010), "Structural health monitoring of a cable-stayed bridge using smart sensor technology: Deployment and evaluation", Smart Struct. Syst., 6(5-6), 439-459. 
    12. Jiles, D.C. (1995), "Theory of the magnetomechanical effect", J. Phys. D: Appl. Phys., 28(8), 1537. 
    13. Kim, J., Swartz, A., Lynch, J.P., Lee, J. and Lee, C. (2010), "Rapid-to-deploy reconfigurable wireless structural monitoring systems using extended-range wireless sensors", Smart Struct. Syst., 6(5-6), 505-524. 
    14. Kim, Y.Y. and Kwon, Y.E. (2015), "Review of magnetostrictive patch transducers and applications in ultrasonic nondestructive testing of waveguides", Ultrasonics, 62, 3-19. 
    15. Kirby, R. (2008), "Modeling sound propagation in acoustic waveguides using a hybrid numerical method", J. Acoust. Soc. Am., 124(4), 1930-1940. 
    16. Legg, M., Yucel, M.K., Kappatos, V., Selcuk, C. and Gan, T. (2015), "Increased range of ultrasonic guided wave testing of overhead transmission line cables using dispersion compensation", Ultrasonics, 62, 35-45. 
    17. Lim, H.J., Kim, Y., Sohn, H., Jeon, I. and Liu, P. (2017), "Reliability improvement of nonlinear ultrasonic modulation based fatigue crack detection using feature-level data fusion", Smart Structu. Syst., 20(6), 683-696. 
    18. Liu, G.R. and Achenbach, J.D. (1994), "A strip element method for stress analysis of anisotropic linearly elastic solids", J. Appl. Mech., 61(2), 270-277. 
    19. Loveday, P.W. (2012), "Guided wave inspection and monitoring of railway track", J. Nondestruct. Eval., 31(4), 303-309. 
    20. Makar, J., and Desnoyers, R. (2001), "Magnetic field techniques for the inspection of steel under concrete cover", NDT & E Int., 34(7), 445-456. 
    21. Min, J., Yun, C. and Hong, J. (2016), "An electromechanical impedance-based method for tensile force estimation and damage diagnosis of post-tensioning systems", Smart Struct. Syst., 17(1), 107-122. 
    22. Mu, J. and Rose, J.L. (2008), "Guided wave propagation and mode differentiation in hollow cylinders with viscoelastic coatings", J. Acoust. Soc. Am., 124(2), 866-874. 
    23. Nucera, C. (2012), "Propagation of nonlinear waves in waveguides and application to nondestructive stress measurement", Ph.D. Dissertation, University of California, San Diego, United States. 
    24. Park, G., Sohn, H., Farrar, C.R. and Inman, D.J. (2003), "Overview of piezoelectric impedance-based health monitoring and path forward", Shock Vib. Digest, 35(6), 451-464. 
    25. Park, H., Sohn, H., Yun, C., Chung, J. and Kwon, I. (2010), "A wireless guided wave excitation technique based on laser and optoelectronics", Smart Struct. Syst., 6(5-6), 749-765. 
    26. Park, S., Grisso, B.L., Inman, D.J. and Yun, C. (2007), "MFCbased structural health monitoring using a miniaturized impedance measuring chip for corrosion detection", Res. Nondestruct. Eval., 18(2), 139-150. 
    27. Puthillath, P. and Rose, J.L. (2010), "Aircraft bond repair patch inspection using ultrasonic guided waves", Review of Progress in Quantitative Nondestructive Evaluation, San Diego, California, USA, July, 
    28. Qin, L., Ren, H., Dong, B. and Xing, F. (2015), "Development of technique capable of identifying different corrosion stages in reinforced concrete", Appl. Acoust., 94, 53-56. 
    29. Rose, J.L., Avioli, M.J., Mudge, P. and Sanderson, R. (2004), "Guided wave inspection potential of defects in rail", NDT & E Int., 37(2), 153-161. 
    30. Rose, J.L. and Royer, R.L. (2008), "A guided wave health monitoring approach for civil structures", Proceedings of the 26th IMAC: Conference and Exposition on Structural Dynamics 2008, Orlando, Florida, USA, February, 
    31. Shull, P.J. (2016), Nondestructive Evaluation: Theory, Techniques, and Applications, CRC press, Boca Raton, Florida, USA. 
    32. Sohn, H., Lim, H.J., DeSimio, M.P., Brown, K. and Derriso, M. (2014), "Nonlinear ultrasonic wave modulation for online fatigue crack detection", J. Sound Vib., 333(5), 1473-1484. 
    33. Treyssede, F. (2008), "Elastic waves in helical waveguides", Wave Motion, 45(4), 457-470. 
    34. Treyssede, F. (2016), "Dispersion curve veering of longitudinal guided waves propagating inside prestressed Seven-Wire strands", J. Sound Vib., 367, 56-68. 
    35. Wang, H., Tao, T., Li, A. and Zhang, Y. (2016), "Structural health monitoring system for Sutong Cable-stayed Bridge", Smart Struct. Syst., 18(2), 317-334. 
    36. Yim, J., Wang, M.L., Shin, S.W., Yun, C., Jung, H., Kim, J. and Eem, S. (2013), "Field application of elasto-magnetic stress sensors for monitoring of cable tension force in cable-stayed bridges", Smart Struct. Syst., 12(3-4), 465-482. 
    37. Zhang, X., Tang, Z., Lv, F. and Yang, K. (2017), "Scattering of torsional flexural guided waves from circular holes and Crack-Like defects in hollow cylinders", NDT & E Int., 89(7), 56-66. 
    38. Zima, B. and Rucka, M. (2017), "Non-Destructive inspection of ground anchors using guided wave propagation", Int. J. Rock Mech. Min. Sci., 94, 90-102. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기