본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Geomechanics & engineering v.16 no.3, 2018년, pp.321 - 329   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Feasibility study of an earth-retaining structure using in-situ soil with dual sheet piles

An, Joon-Sang   (Department of Civil Engineering, Inha University  ); Yoon, Yeo-Won   (Department of Civil Engineering, Inha University  ); Song, Ki-Il   (Department of Civil Engineering, Inha University  );
  • 초록

    Classic braced walls use struts and wales to minimize ground movements induced by deep excavation. However, the installation of struts and wales is a time-consuming process and confines the work space. To secure a work space around the retaining structure, an anchoring system works in conjunction with a braced wall. However, anchoring cannot perform well when the shear strength of soil is low. In such a case, innovative retaining systems are required in excavation. This study proposes an innovative earth-retaining wall that uses in situ soil confined in dual sheet piles as a structural component. A numerical study was conducted to evaluate the stability of the proposed structure in cohesionless dry soil and establish a design chart. The displacement and factor of safety of the structural member were monitored and evaluated. According to the results, an increase in the clearance distance increases the depth of safe excavation. For a conservative design to secure the stability of the earth-retaining structure in cohesionless dry soil, the clearance distance should exceed 2 m, and the embedded depth should exceed 40% of the wall height. The results suggest that the proposed method can be used for 14 m of excavation without any internal support structure. The design chart can be used for the preliminary design of an earth-retaining structure using in situ soil with dual steel sheet piles in cohesionless dry soil.


  • 주제어

    Earth-retaining structure using in situ soil .   dual steel sheet pile .   numerical analysis .   cohesionless dry soil .   preliminary design chart.  

  • 참고문헌 (43)

    1. Adalier, K., Ahmed, W. and Geoffrey, R. (1998), "Foundation liquefaction countermeasures for earth embankments", J. Geotech. Geoenviron. Eng., 124 (6), 500-517. 
    2. Ashour, M. and Ardalan, H. (2012), "Analysis of pile stabilized slopes based on soil-pile interaction", Comput. Geotech., 39, 85-97. 
    3. Bransby, P.L. and Milligan, G.W.E. (1975), "Soil deformations near cantilever sheet pile walls", Geotechnique, 25 (2), 175-195. 
    4. Cai, Y., Ruan, L., Wu, S. and Chen, Y. (1999), "Finite element analysis and application of deep excavation with retaining structure of double-row piles in soft clay", J. Build. Struct., 4, 9. 
    5. Cakir, T. (2014), "Backfill and subsoil interaction effects on seismic behavior of a cantilever wall", Geomech. Eng., 6(2), 117-138. 
    6. Cakir, T. (2017), "Assessment of effect of material properties on seismic response of a cantilever wall", Geomech. Eng., 13(4), 601-619. 
    7. Chatterjee, J. and Amini, F. (2011), "A comparative assessment of slope stability of New Orleans I-wall with partial gap between the wall and layered cohesive backfill", Geomech. Geoeng., 6(3), 217-225. 
    8. Chatterjee, J. and Amini, F. (2013), "A comparative slope stability analysis of sheet pile supported I-wall in New Orleans, Louisiana with sheet pile penetrating into sand layer", Geomech. Geoeng., 8(3), 202-208. 
    9. Crawford, R. and Byfield, M.P. (2002). "A numerical model for predicting the bending strength of Larssen steel sheet piles", J. Construct. Steel Res., 58(10), 1361-1374. 
    10. Cui, H.H., Zhang, L.Q. and Zhao, G.J. (2006), "Numerical simulation of deep foundation pit excavation with double-row piles", Rock Soil Mech., 27(4), 662-666. 
    11. Dai, Z. (2002), "Study on distribution laws of landslide-thrust and resistance of sliding mass acting on antislide piles", Chin. J. Rock Mech. Eng., 21(4), 517-521. 
    12. Finno, R.J., Atmatzidis, D.K. and Perkins, S.B. (1989), "Observed performance of a deep excavation in clay", J. Geotech. Eng., 115(8), 1045-1064. 
    13. Ham, S.M., Kwon, T.H., Chang, I. and Chung, M.K. (2016), "Ultrasonic P-wave reflection monitoring of soil erosion for erosion function apparatus", Geotech. Test. J., 39(2), 301-314, 
    14. Hyundai Steel (2014), Hyundai Steel Product Guide,
    15. Ismeik, M. and Shaqour, F. (2015), "Seismic lateral earth pressure analysis of retaining walls", Geomech. Eng., 8(4), 523-540. 
    16. Jamshidi, R., Towhata, I., Ghiassian, H. and Tabarsa, A.R. (2010), "Experimental evaluation of dynamic deformation characteristics of sheet pile retaining walls with fiber reinforced backfill", Soil Dyn. Earthq. Eng., 30 (6), 438-446. 
    17. Jeong, H.G. and Seo, Y.S. (2013), "Slope stability analysis and landslide hazard assessment in tunnel portal area", J. Kor. Tunn. Undergr. Sp. Assoc., 15 (4), 387-400. 
    18. Kim, C., Kwon, J., Im, J.C. and Hwang, S. (2012), "A method for analyzing the self-supported earth-retaining structure using stabilizing piles", Mar. Georesour. Geotechnol., 30(4), 313-332. 
    19. Kim, T.H. (2008), "An experimental study on the behavior of Earth retaining wall using self-supported stabilizing piles", M.Sc. Thesis, Pusan National University, Busan, Korea. 
    20. Kouichi, O., Kunio, T., Yutaka, K. and Keisuke, S. (1988), "Static analysis model for double sheet-pile wall structures", J. Geotech. Eng., 114 (7), 810-825. 
    21. KSSC (2003) Steel Structures Design Standard by Allowable Stress Design, Korean Society of Steel Construction (in Korean). 
    22. Kwon, T.H. and Ajo-Franklin, J. (2013), "High-frequency seismic response during permeability reduction due to biopolymer clogging in unconsolidated porous media", Geophysics, 78(6), EN117-EN127. 
    23. Kwon, T.H. and Cho, G.C. (2009), "Evolution of compressional wave velocity during $CO_2$ hydrate formation in sediments", Energy Fuel, 23(11), 5731-5736. 
    24. Kwon, T.H. and Cho, G.C. (2005), "Smart geophysical characterization of particulate materials in a laboratory", Smart Struct. Syst., 1(2), 217-233. 
    25. Kwon, T.H., Oh, T.M., Choo, Y.W., Lee, C., Lee, K.R. and Cho, G.C. (2013), "Geomechanical and thermal responses of hydrate-bearing sediments subjected to thermal stimulation: Physical modeling using a geotechnical centrifuge", Energy Fuel, 27(8), 4507-4522. 
    26. Lee, C.J., Chen, H.T., Wei, Y.C., Lin, Y.C., Huang, W.S. and Chiang, K.H. (2007), "Centrifuge modeling of a self-supported double soldier-piled wall in sandy soil", J. GeoEng., 2(3), 97-109. 
    27. Masatoshi, S. (1974), "Lateral behavior of a double sheet pile wall structure", Jap. Soc. Soil Mech. Found. Eng., 14(1), 45-59. 
    28. Nago, H. and Shiro, M. (1984), "Pore water pressure in sand bed under oscillating water pressure", Memoirs School Eng. Okayama Univ., 19(1), 13-32. 
    29. NAVFAC (1986), DM 7.2, Foundations and Earth Structures, Department of the Navy, Naval Facilities Engineering. Command, Alexandria, Virginia, U.S.A. 
    30. Nian, T.K., Xu, H.Y. and Liu, H.S. (2012), "Several issues in three-dimensional numerical analysis of slopes reinforced with anti-slide piles", Rock Soil Mech., 33(8), 2521-2535. 
    31. Noh, D.H., Ajo-Franklin, J.B., Kwon, T.H. and Muhunthan, B. (2016), "P and S wave responses of bacterial biopolymer formation in unconsolidated porous media", J. Geophys. Res. Biogeosci., 121(4), 1158-1177. 
    32. Nyby, D.W. (1981), "Finite element analysis of soil-sheet pile interaction", Ph.D. Dissertation, Utah State University, Utah, U.S.A. 
    33. PLAXIS B.V. (2014), PLAXIS 2D Anniversary Edition Manuals,
    34. Qu, H.L., Li, R.F., Hu, H.G., Jia, H.G. and Zhang, J.J. (2016), "An approach of seismic design for sheet pile retaining wall based on capacity spectrum method", Geomech. Eng., 11(2), 309-323. 
    35. Shin, D.W. and Kim, K.H. (2015), "Analysis of construction process and cost of self-supported retaining wall method using two row H-pile", Korea Sci. Art Forum, 19, 425-434. 
    36. Sim, J.U., Jeong, S.S. and Lee, J.H. (2015), "Numerical analysis of self-supported earth retaining wall with stabilizing piles", J. Kor. Geotech. Soc., 31(5), 35-46. 
    37. Sim, J.U., Park, K.B., Son, S.G. and Kim, S.I. (2009), "A study on the behavior analysis and construction method of the self-supported Earth retaining wall(SSR) using landslide stabilizing piles", J. Kor. Geotech. Soc., 25(1), 41-54. 
    38. Song, K.I., Cho, G.C., Chang, S.B. and Lee, I.M. (2013), "Beam-spring structural analysis for the design of a tunnel pre-reinforcement support system", Int. J. Rock Mech. Min. Sci., 59, 139-150. 
    39. Stewart, D.P., Jewell, R.J. and Randolph, M.F. (1994), "Design of piled bridge abutments on soft clay for loading from lateral soil movements", Geotechnique, 44 (2), 277-296. 
    40. Susumu, I. and Tomohiro, K. (1993), "Finite element analysis of earthquake induced damage to anchored sheet pile quay walls", Japan. Soc. Soil Mech. Found. Eng., 33(1), 71-91. 
    41. Taisaku, M., Hiroaki, A., Hiroshi, Y., Kunio, T. and Yoshihaki, K. (1995), "Static behavior of double sheet-pile wall structures with high rigidity partitions", Kawasaki Steel Giho, 27(4), 242-247. 
    42. Tefera, T., Nordal, S., Grande, L., Sandven, R. and Emdal, A. (2006), "Ground settlement and wall deformation from a large scale model test on a single strutted sheet pile wall in sand", Int. J. Phys. Model. Geotech., 6(2), 1-13. 
    43. Xiang, Y.Z., Goh, A.T.C., Zhang, W.G. and Zhang, R.H. (2018), "A multivariate adaptive regression splines model for estimation of maximum wall deflections induced by braced excavation", Geomech. Eng., 14(4), 315-324. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기