본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Current optics and photonics v.2 no.5, 2018년, pp.468 - 473   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Temperature Dependence of Efficiency Droop in GaN-based Blue Light-emitting Diodes from 20 to 80℃

Ryu, Guen-Hwan   (Department of Physics, Inha University  ); Seo, Dong-Joo   (Department of Physics, Inha University  ); Ryu, Han-Youl   (Department of Physics, Inha University  );
  • 초록

    We investigate the temperature dependence of efficiency droop in InGaN/GaN multiple-quantum-well (MQW) blue light-emitting diodes (LEDs) in the temperature range from 20 to $80^{\circ}C$ . When the external quantum efficiency (EQE) and the wall-plug efficiency (WPE) of the LED sample were measured as injection current and temperature varied, the droop of EQE and WPE was found to be reduced with increasing temperature. As the temperature increased from 20 to $80^{\circ}C$ , the droop ratio of EQE was decreased from 16% to 14%. This reduction in efficiency droop with temperature can be interpreted by a temperature-dependent carrier distribution in the MQWs. When the carrier distribution and radiative recombination rate in MQWs were simulated and compared for different temperatures, the carrier distribution was found to become increasingly homogeneous as the temperature increased, which is believed to partly contribute to the reduction in efficiency droop with increasing temperature.


  • 주제어

    GaN .   Light-emitting diode .   Quantum well .   Efficient droop .   Temperature.  

  • 참고문헌 (38)

    1. H. Y. Ryu, G. H. Ryu, Y. H. Choi, and B. J. Ma, "Modeling and simulation of efficiency droop in GaN-based blue light-emitting diodes incorporating the effect of reduced active volume of InGaN quantum wells," Curr. Appl. Phys. 17, 1298-1302 (2017). 
    2. V. Fiorentini, F. Bernardini, and O. Ambacher, "Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures," Appl. Phys. Lett. 80, 1204-1206 (2002). 
    3. P. Pust, P. J. Schmidt, and W. Schnick, "A revolution in lighting," Nat. Mater. 14, 454-458 (2015). 
    4. J. Bhardwaj, J. M. Cesaratto, I. H. Wildeson, H. Choy, A. Tandon, W. A. Soer, P. J. Schmidt, B. Spinger, P. Deb, O. B. Shchekin, and W. Gotz, "Progress in high-luminance LED technology for solid-state lighting," Phys. Status Solidi A 214, 1600826 (2017). 
    5. J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, "White light-emitting diodes: History, progress, and future," Laser Photon. Rev. 11, 1600147 (2017). 
    6. Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, "White light emitting diodes with super-high luminous efficacy," J. Phys. D: Appl. Phys. 43, 354002 (2010). 
    7. J. Piprek, "Efficiency droop in nitride-based light-emitting diodes," Phys. Status Solidi A 207, 2217-2225 (2010). 
    8. G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, "Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies," J. Appl. Phys. 114, 071101 (2013). 
    9. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, "Auger recombination in InGaN measured by photoluminescence," Appl. Phys. Lett. 91, 141101 (2007). 
    10. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91, 183507 (2007). 
    11. J. I. Shim, H. Kim, D. S. Shin, and H. Y. Ryu, "An explanation of efficiency droop in InGaN-based light emitting diodes: Saturated radiative recombination rate at randomly distributed In-rich active areas," J. Korean Phys. Soc. 58, 503-508 (2011). 
    12. H. Y. Ryu, D. S. Shin, and J. I. Shim, "Analysis of efficiency droop in nitride light-emitting diodes by the reduced effective volume of InGaN active material," Appl. Phys. Lett. 100, 131109 (2012). 
    13. D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, S.-H. Han, M.-H. Kim, C. Sone, S. J. Oh, and J. K. Kim, "Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes," Appl. Phys. Lett. 100, 081106 (2012). 
    14. P. Tian, J. J. D. McKendry, J. Herrnsdorf, S. Watson, R. Ferreira, I. M. Watson, E. Gu, A. E. Kelly, and M. D. Dawson, "Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes," Appl. Phys. Lett. 105, 171107 (2014). 
    15. F. Nippert, S. Y. Karpov, G. Callsen, B. Galler, T. Kure, C. Nenstiel, M. R. Wagner, M. Strassburg, H. J. Lugauer, and A. Hoffmann, "Temperature-dependent recombination coefficients in InGaN light-emitting diodes: Hole localization, Auger processes, and the green gap," Appl. Phys. Lett. 109, 161103 (2016). 
    16. J. Mickevicius, J. Jurkevicius, A. Kadys, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, and R. Gaska, "Temperaturedependent efficiency droop in AlGaN epitaxial layers and quantum wells," AIP Adv. 6, 045212 (2016). 
    17. K. Kim, J. Cho, D. S. Meyaard, G. B. Lin, E. F. Schubert, and J. K. Kim, "Temperature dependence of efficiency in GaInN/GaN light-emitting diodes with a GaInN underlayer," Int. J. Appl. Ceram. Technol. 13, 234-238 (2016). 
    18. L. Zhao, D. Yan, Z. Zhang, B. Hua, G. Yang, Y. Cao, E. X. Zhang, X. Gu, and D. M. Fleetwood, "Temperature-dependent efficiency droop in GaN-based blue LEDs," IEEE Electron. Dev. Lett. 39, 528-531 (2018). 
    19. M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, "Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes," Appl. Phys. Lett. 91, 231114 (2007). 
    20. L. Wang, J. Jin, C. Mi, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, "A review on experimental measurements for understanding efficiency droop in InGaN-based light-emitting diodes," Materials 207, 1233 (2017). 
    21. M. A. Hopkins, D. W. E. Allsopp, M. J. Kappers, R. A. Oliver, and C. J. Humphreys, "The ABC model of recombination reinterpreted: Impact on understanding carrier transport and efficiency droop in InGaN/GaN light emitting diodes," J. Appl. Phys. 122, 234505 (2017). 
    22. A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, "Carrier distribution in (0001) InGaN/GaN multiple quantum well light-emitting diodes," Appl. Phys. Lett. 92, 053502 (2008). 
    23. H. Y. Ryu and J. I. Shim, "Effect of current spreading on the efficiency droop of InGaN light-emitting diodes," Opt. Express 19, 2886-2894 (2011). 
    24. D. S. Shin, D. P. Han, J. Y. Oh, and J. I. Shim, "Study of droop phenomena in InGaN-based blue and green lightemitting diodes by temperature-dependent electroluminescence," Appl. Phys. Lett. 100, 153506 (2012). 
    25. F. Zhang, N. Can, S. Hafiz, M. Monavarian, S. Das, V. Avrutin, U. Ozgur, and H. Morkoc, "Improvement of carrier injection symmetry and quantum efficiency in InGaN light-emitting diodes with Mg delta-doped barriers," Appl. Phys. Lett. 106, 181105 (2015). 
    26. H. Y. Ryu, K. S. Jeon, M. G. Kang, H. K. Yuh, Y. H. Choi, and J. S. Lee, "A comparative study of efficiency droop and internal electric field for InGaN blue light-emitting diodes on silicon and sapphire substrates," Sci. Rep. 7, 44814 (2017). 
    27. APSYS by Crosslight Software, Inc., Burnaby, Canada, Available: http://www.crosslight.com. 
    28. J. Piprek, "AlGaN polarization doping effects on the efficiency of blue LEDs," Proc. SPIE 8262, 82620E (2012). 
    29. S. H. Park and Y. T. Moon, "Temperature droop characteristics of internal quantum efficiency in InGaN/GaN quantum well light-emitting diodes," IEEE Photon. J. 6, 1600209 (2014). 
    30. C. D. Santi, M. Meneghini, M. L. Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, and E. Zanoni, "Role of defects in the thermal droop of InGaN-based light emitting diodes," J. Appl. Phys. 119, 094501 (2016). 
    31. J. Piprek, "Comparative efficiency analysis of GaN-based light-emitting diodes and laser diodes," Appl. Phys. Lett. 109, 021104 (2016). 
    32. M. Farahmand, C. Garetto, E. Bellotti, K. F. Brennan, M. Goano, E. Ghillino, G. Ghione, J. D. Albrecht, and P. P. Ruden, "Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries," IEEE Trans. Electron. Devices 48, 535-542 (2001). 
    33. J. R. Chen, Y. C. Wu, S. C. Ling, T. S. Ko, T. C. Lu, H. C. Kuo, Y. K. Kuo, S. C. Wang, "Investigation of wavelength-dependent efficiency droop in InGaN lightemitting diodes," Appl. Phys. B 98, 779-789 (2010). 
    34. J. Piprek, Semiconductor Optoelectronic Devices (Academic Press, 2003), Chapter 9. 
    35. H. Y. Ryu and K. H. Ha, "Effect of active-layer structures on temperature characteristics of InGaN blue laser diodes," Opt. Express 16, 10849-10857 (2008). 
    36. H. Y. Ryu, "Investigation into the anomalous temperature characteristics of InGaN double quantum well blue laser diodes using numerical simulation," Nanoscale Res. Lett. 12, 366 (2017). 
    37. Y. H. Choi, G. H. Ryu, and H. Y. Ryu, "Evaluation of the temperature-dependent internal quantum efficiency and the light-extraction efficiency in a GaN-based blue light-emitting diode by using a rate equation model," J. Korean Phys. Soc. 69, 1286-1289 (2016). 
    38. S. Tanaka, Y. Zhao, I. Koslow, C. C. Pan, H. T. Chen, J. Sonoda, S. P. DenBaars, and S. Nakamura, "Droop improvement in high current range on PSS-LEDs," Electron. Lett. 47, 335-336 (2011). 

 저자의 다른 논문

  • Ryu, Han-Youl (8)

    1. 2017 "Numerical Investigation of Purcell Enhancement of the Internal Quantum Efficiency of GaN-based Green LED Structures" Current optics and photonics 1 (6): 626~630    

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기