본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

韓國纖維工學會誌 = Textile science and engineering v.55 no.5, 2018년, pp.324 - 329  
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

열경화성 액정 에폭시 매트릭스 복합재료의 열분해 거동 비교
Thermal Decomposition Behavior of Liquid Crystalline Epoxy-Based Composites

박종현   (숭실대학교 유기신소재.파이버공학과  ); 조승현   (숭실대학교 유기신소재.파이버공학과  );
  • 초록

    Thermosetting liquid crystalline epoxy is an epoxy polymer that forms a liquid crystalline network structure upon curing. 4,4'-Diglycidyloxybiphenyl with an aromatic rigid-rod part such as a biphenyl group exhibits liquid crystallinity. Biphenol epoxy resin (BP), which is cured by using sulfanilamide, forms a liquid crystalline network by reacting the amine and epoxy ring of sulfanilamide and biphenol. In this experiment, silicon nitride (Si3N4) or aluminum nitride (AlN) was used as a filler. The activation energy required for the decomposition was calculated using the Kissinger method and the Flynn-wall method to confirm the thermal properties of the thermosetting liquid crystalline epoxy with silicon nitride. As a result, the activation energy required for decomposition of the composite increased with increasing silicon nitride content, and it was confirmed that silicon nitride increased the thermal stability of the thermosetting liquid crystalline epoxy.


  • 주제어

    liquid crystalline thermosetting epoxy .   silicon nitride .   aluminum nitride .   activation energy for thermal decomposition .   Kissinger method .   Flynn-wall method.  

  • 참고문헌 (24)

    1. J. H. Flynn and L. A. Wall, "A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data", Polym. Lett., 1966, 4, 323-328. 
    2. F. Yao, Q. Wu, Y. Lei, W. Guo, and Y. Xu, "Thermal Decomposition Kinetics of Natural Fibers: Activation Energy with Dynamic Thermogravimetric Analysis", Polym. Degrad. Stab., 2008, 93, 90-98. 
    3. J. S. Oh, J. M. Lee, and W. S. Ahn, “Non-isothermal TGA Analysis on Thermal Degradation Kinetics of Modified-NR Rubber Composites”, Polymer (Korea), 2009, 33, 435-440. 
    4. https://www.sigmaaldrich.com 
    5. X. Wu, P. Jiang, Y. Zhou, J. Yu, F. Zhang, L. Dong, and Y. Yin, "Influence of Alumina Content and Thermal Treatment on the Thermal Conductivity of $UPE/Al_2O_3$ Composite", J. Appl. Polym. Sci., 2014, 131, 40528. 
    6. M. Donnay, S. Tzawalas, and E. Logakis, "Boron Nitride Filled Epoxy with Improved Thermal Conductivity and Dielectric Breakdown Strength", Compos. Sci. Tech., 2015, 441, 152-158. 
    7. H. J. Moon, K. H. Kim, S. Hwangbo, and S. H. Cho, "Thermal Decomposition Behavior of LCT Composites with Modified Zirconia Filler", Text. Sci. Eng., 2016, 53, 293-298. 
    8. G. C. Huang, C. H. Lee, and J. K. Lee, “Thermal and Mechanical Properties of Short Fiber-Reinforced Epoxy Composites”, Polymer (Korea), 2009, 33, 530-536. 
    9. H. Hayashi, “High Thermal Conductivity of Silicon Nitride”, Functional Materials, 2008, 28, 27-32. 
    10. K. S. Lee and D. K. Kim, "Study on the Contact Damage in Silicon Nitride Bilayer", J. Am. Ceram. Soc., 1998, 81, 571-580. 
    11. K. S. Lee, S. K. Lee, B. R. Lawn, and D. K. Kim, "Contact Damage and Strength Degradation in Brittle/Quasi-Plastic Silicon Nitride Bilayers", J. Am. Ceram. Soc., 1998, 81, 2394-2404. 
    12. R. Lee, “Development of High Thermal Conductivity Aluminum Nitride Ceramic”, J. Am. Ceramic, 1991, 74, 2242-2249. 
    13. W. F. A. Su, K. C. Chen, and S. Y. Tseng, "Effects of Chemical Structure Changes on Thermal, Mechanical, and Crystalline Properties of Rigid Rod Epoxy Resins", J. Appl. Polym. Sci., 2000, 78, 446-451. 
    14. S. Hwangbo and S. H. Cho, "Thermal Decomposition Behavior of LCT Composites Using Boron Nitride Filler", Text. Sci. Eng., 2018, 55, 35-40. 
    15. H. E. Kissinger, "Reaction Kinetics in Differential Thermal Analysis", Anal. Chem., 1957, 29, 1702-1706. 
    16. Y. Kim, J. Jung, H. Yeo, N.-H. You, S. G. Jang, S. Ahn, S. H. Lee, and M. J. Goh, "Development of Highly Thermal Conductive Liquid Crystalline Epoxy Resins for High Thermal Dissipation Composites", J. Kor. Soc. Compos. Mat., 2017, 30, 1-6. 
    17. H. J. Moon, K. H. Kim, S. Hwangbo, and S. H. Cho, "Thermal Decomposition Activation Energy of Liquid Crystalline Epoxy Composite with Zirconia Filler", Text. Sci. Eng., 2016, 52, 206-214. 
    18. H. Lee and N. Kris, "Handbook of Epoxy Resins", McGrawHill, New York, 1982. 
    19. Y. Takezawa, “High Thermal Conductivity Liquid Crystalline Epoxy Resin”, Expected Materials for the Future (Japan), 2007, 7, 28-34. 
    20. M. Harada, N. Hamaura, M. Ochi, and Y. Agari, “Theraml Conductivity of Liquid Crystalline Epoxy/BN Filler Composites having Ordered Network Structure”, Composites: Part B, 2013, 55, 306-313. 
    21. M. Akatsuka and Y. Takezawa, "Study of High Thermal Conductive Epoxy Resins Containg Controlled High-order Structures", J. Appl. Polym. Sci., 2003, 89, 2464-2467. 
    22. G. G. Barklay, S. G. McNames, C. K. Ober, K. I. Papathomas, and D. W. Wang, "The Mechanical and Magnetic Alignment of Liquid Crystalline Epoxy Thermoset", J. Polym. Sci. Part A: Polym. Chem., 1992, 30, 1845-1853. 
    23. M. Harada, M. Ochi, M. Tobita, T. Kimura, T. Ishigaki, N. Shimoyama, and H. Aoki, "Thermal-conductivity Properties of Liquid-crystalline Epoxy Resin Cured under a Magnetic Field", J. Polym. Sci. Part B: Polym. Phys., 2003, 41, 1739-1743. 
    24. Y. Oh, B. I. You, J. H. Ahn, and G. W. Lee, "Investigation of Thermal Stability of Epoxy Composite Reinforced with Multiwalled Carbon Nanotubes and Micrometersized Silica Particles", J. Korean Soc. Compos. Mater., 2016, 29, 306-314. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 이용한 콘텐츠
이 논문과 함께 출판된 논문 + 더보기