본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

비콘을 사용한 ANN기반 적응형 거리 측정
ANN-based Adaptive Distance Measurement Using Beacon

노지우   (전북대학교 소프트웨어공학과  ); 김태영   (전북대학교 소프트웨어공학과  ); 김순태   (전북대학교 소프트웨어공학과  ); 이정휴   (전북대학교 소프트웨어공학과  ); 유희경   (강원대학교 컴퓨터공학과  ); 강윤구   (유저인사이트  );
  • 초록

    저전력 블루투스(BLE; Bluetooth Low Energy) 기술을 사용한 비콘은 실외에서만 위치 측위가 가능한 GPS(Global Positioning System)와 달리 실내에서도 위치 파악이 가능하다. 비콘을 사용한 실내 거리 측정에는 RSSI(Received Signal Strength Indication)값이 핵심 요소인데 그에 반해 RSSI값은 여러 환경요소로부터 영향을 받기 때문에 예측된 거리와 실제 거리의 오차가 크게 나타난다. 이러한 이슈를 다루기 위해 비콘을 사용한 ANN(Artificial Neural Network)기반 적응형 거리 측정을 제안한다. 먼저 RSSI의 잡음을 줄이기 위해 확장 칼만 필터와 신호 안정화 필터를 사용한 전처리 과정을 거친다. 그리고 각각 특정 학습 데이터 셋을 가진 다층 ANN들은 학습을 거치게 된다. 결과에서는 평균오차 0.67m를 보여주고, 0.78의 precision을 보여준다.


    Beacon enables one to measure distance indoors based on low-power Bluetooth low energy (BLE) technology, while GPS (Global Positioning System) only can be used outdoors. In measuring indoor distance using Beacon, RSSI (Received Signal Strength Indication) is considered as the one of the key factors, however, it is influenced by various environmental factors so that it causes the huge gap between the estimated distance and the real. In order to handle this issue, we propose the adaptive ANN (Artificial Neural Network) based approach to measuring the exact distance using Beacon. First, we has carried out the preprocessing of the RSSI signals by applying the extended Kalman filter and the signal stabilization filter into decreasing the noise. Then, we suggest the multi-layered ANNs, each of which layer is learned by specific training data sets. The results showed an average error of 0.67m, a precision of 0.78.


  • 주제어

    Artificial Neural Networks .   Adaptive Distance Measurement .   Beacons .   Extended Kalman Filter.  

  • 참고문헌 (12)

    1. Chouchang Yang, Huai-Rong Shao,"WiFi-based indoor positioning", IEEE Communications Magazine 2015, 53(3): pp150-157 DOI: https://doi.org/10.1109/MCOM.2015.7060497 
    2. A. Fod, A. Howard, and M. J. Mataric, "A laser-based people tracker," in Proc. ICRA, 2002. DOI: https://doi.org/10.1109/ROBOT.2002.1013691 
    3. Hyung-Seo Kang, In-Soo Koo, "Beacon Node Based Localization Algorithm Using Received Signal Strength(RSS) and Path Loss Calibration for Wireless Sensor Networks", The Journal of The Institute if Webcasting, Internet and Telecommunication, Vol. 11, No. 1, pp. 15-22, Feb. 2011. 
    4. F. Mazan, A. Kovarova: "Optimizing Artificial Neural Network for Beacon Based Indoor Localization," CompSysTech 2016 Pages 261-268, DOI: https://doi.org/10.1145/2983468.2983515 
    5. Ahmad, U., Gavrilov, A. and Lee, S. "In-building localization using neural networks." IEEE International Conference on Engineering of Intelligent Systems(2006), IEEE, pp. 1-6. DOI: https://doi.org/10.1109/iceis.2006.1703135 
    6. R. Kalman, "A new approach to linear filtering and prediction problems," Trans. ASME, J. Basic Eng., vol. 82, pp. 35-45, Mar. 1960. DOI: https://doi.org/10.1109/9780470544334.ch9 
    7. Sun-jo Kwon, Hyeon-tae Kim, Chang-uk Ahn, "A study on the correction algorithm for signal stabilization of bluetooth beacon", korea institute of communication sciences 2016, pp298-299 
    8. Marisa Moody. 2015. "Analysis of Promising Beacon Technology for Consumers." Elon Journal of Undergraduate Research in Communications 6, 1 (2015). 
    9. A. Awad, T. Frunzke, and F. Dressler, "Adaptive distance estimation and localization in WSN using RSSI measures," in Proc. 10th Euromicro Conf. Digital Syst. Des. Architectures, Methods Tools (DSD), 2007, pp. 471-478. DOI: https://doi.org/10.1109/dsd.2007.4341511 
    10. [Online]. Available: http://btnode.ethz.ch/ 
    11. Young-Ho Song, In-Hwan Kim, Soo-Young Shin, Hyun-Sik Ahn, Gu-Min Jeong, "Capacity Analysis of Bluetooth Access Point for Location Based Service with Mobile Phones and Bluetooth", The Journal of The Institute of Internet, Broadcasting and Communication, Vol. 10 No. 5, pp 187-192, Oct 2010. DOI: https://doi.org/10.5370/jeet.2013.8.1.183 
    12. Hyung-Seo Kang, In-Soo Koo, "Beacon Node Based Localization Algorithm Using Received Signal Strength(RSS) and Path Loss Calibration for Wireless Sensor Networks", The Journal of The Institute of Internet, Broadcasting and Communication, VOL. 11 No. 1, pp.15-21, Feb 2011. DOI: http://www.riss.kr/link?id=A82610964 

 저자의 다른 논문

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
  • The Institute of Internet, Broadcasting and Communication : 저널
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 이용한 콘텐츠
이 논문과 함께 출판된 논문 + 더보기