본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

정지영상 및 동영상 인지화질 측정 기술 동향
Technology Trends on Image/Video Perceptual Quality Assessment

이대열   (실감 AV 연구그룹  ); 김종호   (실감 AV 연구그룹  ); 정세윤   (실감 AV 연구그룹  ); 조승현   (실감 AV 연구그룹  ); 김휘용   (실감 AV 연구그룹  ); 최진수   (실감 AV 연구그룹  );
  • 초록

    Assessment technologies regarding the perceptual quality of images and videos have been receiving significant attention, as they serve as essential tools for monitoring and improving the quality of various media services. In this paper, we review the technology trends of recent studies on the perceptual quality assessment of images and videos, and discuss the future direction of this research field.


  • 참고문헌 (28)

    1. Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy, and M. Manohara, "Toward a Practical Perceptual Video Quality Metric," The Netflix Tech Blog, July 24, 2017. http://techblog.netflix.com/2016/06/toward-practical-perceptual-video.html 
    2. C.G. Bampis, Z. Li, I. Katsavounidis, and A.C. Bovik "Recurrent and Dynamic Models for Predicting Streaming Video Quality of Experience," IEEE Trans. Image Process., vol. 27, no. 7, July 2018, pp. 3316-3331. 
    3. L. Xu, W. Lin, and C.C. Kuo, Visual Quality Assessment by Machine Learning, Singapore: Springer, 2015. 
    4. LIVE Image Quality Assessment Database. http://live.ece.utexas.edu/research/quality/subjective.htm 
    5. N.N. Ponomarenko, "Tampere Image Database, Version 1.0, 2008," Feb. 22, 2010. http://www.ponomarenko.info/tid2008.htm 
    6. N.N. Ponomarenko, "Image Database for Evaluation of Full-Reference Image Visual Quality Assessment Metrics," Mar. 23, 2014. http://www.ponomarenko.info/tid2013.htm 
    7. CSIQ Lab, "CSIQ Image Database," Apr. 29, 2016. http://vision.eng.shizuoka.ac.jp/mod/page/view.php?id=23 
    8. Laboratory for Image & Video Engineering, "LIVE Video Quality Assessment Database," 2009. http://live.ece.utexas.edu/research/quality/live_video.html 
    9. CSIQ Lab, "CSIQ Video Database," May 8, 2016. http://vision.eng.shizuoka.ac.jp/mod/page/view.php?id=24 
    10. Z. Li, "NFLX Public Database," GooGle Drive, Mar. 2, 2016. https://drive.google.com/drive/u/0/folders/0B3YWNICYMBIweGdJbERlUG9zc0k 
    11. Institute for Telecommunication Science, "VQEG, HDTV Database." http://www.its.bldrdoc.gov/vqeg/projects/hdtv/ 
    12. ITU-R BT.500-13 (2012) ITU, Methodology for the Subjective Assessment of the Quality of Television Pictures, 2012. 
    13. S. Bosse, D. Maniry, T. Wiegand, and W. Samek, "A Deep Neural Network for Image Quality Assessment," IEEE Trans. Image Proccess., Phoenix, AZ, USA, Sept. 28, 2016, pp. 3773-3777. 
    14. S. Bosse, D.Maniry, K.-R. Muller, T. Wiegand, and W. Samek, "Deep Neural Networks for No-reference and Full-Reference Image Quality Assesment," IEEE Trans. Image Proccess., vo. 27, no. 1, Jan. 2017, pp. 206-219. 
    15. Z. Wang, E.P. Simoncelli, and A.C. Bovik, "Multiscale Structural Similarity for Image Quality Assessment," IEEE Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, USA, Nov. 9-12, 2003, pp. 1398-1402. 
    16. E.C. Larson and D.M. Chandler, "Most Apparent Dis-Tortion: Full-Reference Image Quality Assessment and the Role of Strategy," J. Electron. Imag., vol. 19, no. 1, 2010, pp. 0110061:1-0110061:21. 
    17. M.A Saad, A.C. Bovik, and C. Charrier, "Blind Image Quality Assessment: A Natural Scene Statistics Approach in the DCT Domain," IEEE Trans. Image Process., vol. 21, no. 8, Aug. 2012, pp. 3339-3352. 
    18. K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," arXiv:1409.1556, Sept. 2014. 
    19. P.V. Vu, C.T. Vu, and D.M. Chandler, "A Spatiotemporal Most-Apparent-Distortion Model for Video Quality Assessment," IEEE Int. Conf. Image Process., Brussels, Belgium, Sept. 11-14, 2011, pp. 2505-2508. 
    20. M.A. Saad, A.C. Bovik, and C. Charrier, "Blind Prediction of Natural Video Quality," IEEE Trans. Image. Process., vol. 23, no. 3, Mar. 2014, pp. 1352-1365. 
    21. S. Wolf and M.H. Pinson, "Video Quality Model for Variable Frame Delay (VQM_VFD)," U.S. Dept. Commer., Nat. Telecommun. Inf. Admin., Boulder, CO, USA, Tech. Memo TM-11-482, Sept. 2011. 
    22. D. Ghadiyaram, J. Pan, and A. Bovik, "A Subjective and Objective Study of Stalling Events in Mobile Streaming Videos," IEEE Trans. Circuits Syst. Video Technol., Nov. 2017. 
    23. Z. Duanmu, A. Rehman, K. Zeng, and Z. Wang, "Quality-of-Experience Prediction for Streaming Video," in Proc. IEEE Int. Conf. Multimedia Expo (ICME), Seattle, WA, USA, July 11-16, 2016, pp. 1-6. 
    24. C.G. Bampis, Z. Li, A.K. Moorthy, I. Katsavounidis, A. Aaron, and A.C. Bovik, "Study of Temporal Effects on Subjective Video Quality of Experience," IEEE Trans. Image Process., vol. 26, no. 11, Nov. 2017, pp. 5217-5231. 
    25. D. Ghadiyaram, J. Pan, and A.C. Bovik, "Learning a Continuous-Time Streaming Video QoE Model," IEEE Trans. Image Process., May. 2018, pp. 2257-2271. 
    26. J.A. Nelder, "The Fitting of a Generalization of the Logistic Curve," Biometrics, vol. 17, no. 1, 1961, pp. 89-110. 
    27. J.L. Elman, "Finding Structure in Time," Cognitive Sci., vol. 14, no. 2, 1990, pp. 179-211. 
    28. C.G. Bampis and A.C. Bovik, "An Augmented Autoregressive Approach to HTTP Video Stream Quality Prediction," arXiv: 1707.02709, July 2017. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기