본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Wavelet packet computation of the Hurst exponent

Jones, C L ; Lonergan, G T ; Mainwaring, D E ;
  • 초록  

    Wavelet packet analysis was used to measure the global scaling behaviour of homogeneous fractal signals from the slope of decay for discrete wavelet coefficients belonging to the adapted wavelet best basis. A new scaling function for the size distribution correlation between wavelet coefficient energy magnitude and position in a sorted vector listing is described in terms of a power law to estimate the Hurst exponent. Profile irregularity and long-range correlations in self-affine systems can be identified and indexed with the Hurst exponent, and synthetic one-dimensional fractional Brownian motion (fBm) type profiles are used to illustrate and test the proposed wavelet packet expansion. We also demonstrate an initial application to a biological problem concerning the spatial distribution of local enzyme concentration in fungal colonies which can be modelled as a self-affine trace or an `enzyme walk'. The robustness of the wavelet approach applied to this stochastic system is presented, and comparison is made between the wavelet packet method and the root-mean-square roughness and second-moment approaches for both examples. The wavelet packet method to estimate the global Hurst exponent appears to have similar accuracy compared with other methods, but its main advantage is the extensive choice of available analysing wavelet filter functions for characterizing periodic and oscillatory signals.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기