본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Neural networks trained by analytically simulated damage states

Elkordy, M.F. ; Chang, K.C. ; Lee, G.C. ;
  • 초록  

    Identifying changes in the vibrational signatures of a structure is a promising tool in structural monitoring. Neural networks can be used for this purpose. For a neural network to diagnose damage correctly, it must be trained with successfully diagnosed damage states (learning or training samples). Training samples can be developed over time as actual damage states are experienced by the structure. They can also be obtained from a destructive test program in which the variations in vibrational signatures are recorded. Both of these methods of obtaining learning samples are difficult to implement and make the approach impractical. This paper investigates the feasibility of using analytically generated training samples to train neural networks. These networks, trained with analytically generated states of damage, were used to diagnose damage states obtained experimentally from a series of shaking-table tests of a five-story steel frame. The results show that neural networks, trained with analytically obtained sample cases, have a strong potential for making on-line structural monitoring a practical reality.(Author abstract)


  • 원문보기

    원문보기
    무료다운로드 유료다운로드
    • 원문이 없습니다.

    유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역