본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

On the duality between Boolean-valued analysis and reduction theory under the assumption of separability

Nishimura, Hirokazu ;
  • 초록  

    Abstract It is well known that the real and complex numbers in the Scott-Solovay universe V (B) of ZFC based on a complete Boolean algebra B are represented by the real-valued and complex-valued Borel functions on the Stonean space Ω of B . The main purpose of this paper is to show that the separable complex Hilbert spaces and the von Neumann algebras acting on them in V (B) can be represented by reasonable classes of families of complex Hilbert spaces and of von Neumann algebras over Ω . This could be regarded as the duality between Boolean-valued analysis developed by Ozawa, Takeuti, and others and the traditional reduction theory based not on measure spaces but on Stonean spaces. With due regard to Ozawa, this duality could pass for a sort of reduction theory for AW * -modules over commutative AW * -algebras and embeddable AW * -algebras. Under the duality we establish several fundamental correspondence theorems, including the type correspondence theorems of factors.


  • 원문보기

    원문보기
    무료다운로드 유료다운로드
    • NDSL :

    유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역