본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Statistical Methods for Data with Long-Range Dependence

Beran, Jan ;
  • 초록  

    It is well known to applied statisticians and scientists that the assumption of independence is often not valid for real data. In particular, even when all precautions are taken to prevent dependence, slowly decaying serial correlations frequently occur. If not taken into account, they can have disastrous effects on statistical inference. This phenomenon has been observed empirically by many prominent scientists long before suitable mathematical models were known. Apart from some scattered early references, mathematical models with long-range dependence were first introduced to statistics by Mandelbrot and his co-workers (Mandelbrot and Wallis, 1968, 1969; Mandelbrot and van Ness, 1968). Since then, long-range dependence in statistics has gained increasing attention. Parsimonious models with long memory are stationary increments of self-similar processes with self-similarity parameter $H \in (1/2,1)$ , fractional ARIMA processes and other stationary stochastic processes with non-summable correlations. In the last decade, many results on statistical inference for such processes have been established. In the present paper, a review of these results is given.


  • 원문보기

    원문보기
    무료다운로드 유료다운로드

    유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

  • 주제어

    Long-range dependence .   fractional Gaussian noise .   fractional ARIMA .   self-similar .   point estimation .   interval estimation .   prediction.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역