본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Inference from Iterative Simulation Using Multiple Sequences

Gelman, Andrew ; Rubin, Donald B. ;
  • 초록  

    The Gibbs sampler, the algorithm of Metropolis and similar iterative simulation methods are potentially very helpful for summarizing multivariate distributions. Used naively, however, iterative simulation can give misleading answers. Our methods are simple and generally applicable to the output of any iterative simulation; they are designed for researchers primarily interested in the science underlying the data and models they are analyzing, rather than for researchers interested in the probability theory underlying the iterative simulations themselves. Our recommended strategy is to use several independent sequences, with starting points sampled from an overdispersed distribution. At each step of the iterative simulation, we obtain, for each univariate estimand of interest, a distributional estimate and an estimate of how much sharper the distributional estimate might become if the simulations were continued indefinitely. Because our focus is on applied inference for Bayesian posterior distributions in real problems, which often tend toward normality after transformations and marginalization, we derive our results as normal-theory approximations to exact Bayesian inference, conditional on the observed simulations. The methods are illustrated on a random-effects mixture model applied to experimental measurements of reaction times of normal and schizophrenic patients.


  • 원문보기

    원문보기
    무료다운로드 유료다운로드

    유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

  • 주제어

    Bayesian inference .   convergence of stochastic processes .   EM .   ECM .   Gibbs sampler .   importance sampling .   Metropolis algorithm .   multiple imputation .   random-effects model .   SIR.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역