본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Integration of covariance kernels and stationarity

Lasinger, R. (University of Augsburg,, , Germany );
  • 초록  

    The necessary and sufficient matrix condition of Mitchell, Morris and Ylvisaker (1990) for a stationary Gaussian process to have a specified process as kth derivative is investigated. The mean-square smoothing approach of stationary processes requires integration of covariance functions preserving stationarity. By providing a recursive representation of the involved reproducing kernel Hilbert spaces it is possible to analyse another criterion for k-fold integration of a process. This criterion only contains inequalities for the variances of the integrated processes. If the Hilbert space associated with the covariance function has a special form, which often occurs, then it can be shown that such processes can be integrated arbitrarily often. This is especially the case for the Ornstein-Uhlenbeck process. The results are applied to the linear and the exponential kernel and yield explicit norms in the corresponding reproducing kernel Hilbert spaces for each integration.


  • 주제어

    mean-square integration .   stationary process .   reproducing kernel Hilbert space .   Ornstein-Uhlenbeck process.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기