본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Wave motion v.17 no.2, 1993년, pp.185 - 196  

Uniformly valid asymptotic wave propagation based upon variational principles

Tromp, Jeroen ;
  • 초록  

    Abstract We present a uniformly valid asymptotic theory for linear, short-wavelength waves based upon ‘slow’ variational principles in configuration space, mixed space, and momentum space. The variational principles define an eikonal equation, which determines the ray geometry, and transport equations, which determine the amplitude variations in the various projections of phase space. There are no caustics in phase space, i.e. neighboring rays in phase space never cross, as a result of Liouville's theorem for Hamiltonian systems. It is only when the phase-space trajectories are projected onto configuration space, a mixed space, or momentum space, that caustics occur. The essential strategy is to consider a mixed-space or momentum-space variational principle in the vicinity of a configuration-space caustic. We use the two-dimensional Helmholtz equation to illustrate the theory because it constitutes a simple example that captures all the features of the variational technique.


  • 원문보기

    원문보기
    무료다운로드 유료다운로드
    • NDSL :

    유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역