본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Residual empirical processes for nearly unstable long-memory time series

Chan, N.H.  
  • 초록

    This paper studies the goodness-of-fit test of the residual empirical process of a nearly unstable long-memory time series. Chan and Ling (2008) showed that the usual limit distribution of the Kolmogorov-Smirnov test statistics does not hold for an unstable autoregressive model. A key question of interest is what happens when this model has a near unit root, that is, when it is nearly unstable. In this paper, it is established that the statistics proposed by Chan and Ling can be generalized to encompass nearly unstable long-memory models. In particular, the limit distribution is expressed as a functional of an Ornstein-Uhlenbeck process that is driven by a fractional Brownian motion. Simulation studies demonstrate that the limit distribution of the statistic possesses desirable finite sample properties and power.


  • 주제어

    [msc] primary; 62G30 .   [msc] secondary; 62M10 .   Kolmogorov-Smirnov statistics .   Long-memory noises .   Nearly unstable time series .   Residual empirical processes.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기