본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

ACS applied materials & interfaces v.9 no.2, 2017년, pp.1237 - 1246   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Realization of a High Sensitivity Microphone for a Hearing Aid Using a Graphene–PMMA Laminated Diaphragm

Woo, SeongTak (Department of Biomedical Engineering, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu 41944, ) ; Han, Jae-Hyung (School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, ) ; Lee, Jyung Hyun (Department of Biomedical Engineering, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu 41944, ) ; Cho, Sunghun ; Seong, Ki-Woong ; Choi, Muhan ; Cho, Jin-Ho ;
  • 초록  

    Microphones for hearing aid systems are required to have high sensitivity, an appropriate bandwidth, and a wide dynamic range. In this paper, a high sensitivity microphone, 4 mm in diameter and using a multilayer graphene-PMMA laminated diaphragm that can be applied in hearing aids, is designed, optimized, and implemented, Typically, polyphenylene sulfide (PPS) has been used for the diaphragm of electret condenser microphones (ECM), and this method provides simple, low cost mass production. Generally, the sensitivity of the commercial 4 mm diameter ECM is about 30 to 35 dB (0 dB = 1 V/Pa). A microphone using a nanometer-thick graphene diaphragm has been found to have higher sensitivity than, the conventional.:ECM. However, nanometer-thick multilayer graphene is vulnerable to large mechanical shocks or high sound pressures, and the practical production of nanometer-thick diaphragms also poses a challenge. However, if a multilayer graphene diaphragm of the same thickness as the conventional ECM is used, displacement during diaphragm vibration will be severely attenuated due to the high elastic modulus of graphene, and the microphone sensitivity will be greatly reduced. In this paper, we fabricate a multilayer graphene/poly(methyl methacrylate) (PMMA) laminated diaphragm with sensitivity higher than that of any other microphones currently available for hearing aids, with the appropriate bandwidth in the auditory range. The high, sensitivity arises from the laminated structure of the thin graphene membrane with high elastic modulus and from the PMMA membrane with lower elastic modulus and higher dielectric constant. The optimal thickness ratio of the graphene-PMMA layered diaphragm was studied by both analytical and experimental methods, and then a fabricated diaphragm was assembled in a 4 mm diameter microphone package. The performance of the implemented microphone was evaluated, including the sensitivity and total harmonic distortion. It is demonstrated that the microphone using a multilayer graphene-PMMA diaphragm has an excellent sensitivity of 20 dB and a dynamic range of 90 dB, which is on average 9 dB higher than the microphone using the conventional ECM diaphragm.


  • 주제어

    graphene microphone .   graphene−PMMA diaphragm .   high sensitivity microphone .   electret condenser microphone .   hearing aid.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기