본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

ACS chemical biology v.12 no.1, 2017년, pp.214 - 224   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

A Chemical Biology Solution to Problems with Studying Biologically Important but Unstable 9-O-Acetyl Sialic Acids

Khedri, Zahra (Glycobiology Research and Training Center, University of California, San Diego, California 92093, ) ; Xiao, An (Department of Chemistry, University of California, Davis, California 95616, ) ; Yu, Hai (Department of Chemistry, University of California, Davis, California 95616, ) ; Landig, Corinna Susanne (Glycobiology Research and Training Center, University of California, San Diego, California 92093, ) ; Li, Wanqing (Department of Chemistry, University of California, Davis, California 95616, ) ; Diaz, Sandra (Glycobiology Research and Training Center, University of California, San Diego, California 92093, ) ; Wasik, Brian R. (Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, ) ; Parrish, Colin R. (Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, ) ; Wang, Lee-Ping (Department of Chemistry, University of California, Davis, California 95616, ) ; Varki, Ajit (Glycobiology Research and Training Center, University of California, San Die ) ; Chen, Xi ;
  • 초록  

    9-O-Acetylation is a common natural modification on sialic acids (Sias) that terminate many vertebrate glycan chains. This ester group has striking effects on many biological phenomena, including microbe-host interactions, complement action, regulation of immune responses, sialidase action, cellular apoptosis, and tumor immunology. Despite such findings, 9-O-acetyl sialoglycoconjugates have remained largely understudied, primarily because of marked lability of the 9-O-acetyl group to even small pH variations and/or the action of mammalian or microbial esterases. Our current studies involving 9-O-acetylated sialoglycans on glycan microarrays revealed that even the most careful precautions cannot ensure complete stability of the 9-O-acetyl group. We now demonstrate a simple chemical biology solution to many of these problems by substituting the oxygen atom in the ester with a nitrogen atom, resulting in sialic acids with a chemically and biologically stable 9-N-acetyl group. We present an efficient one-pot multienzyme method to synthesize a sialoglycan containing 9-acetamido-9-deoxy- N -acetylneuraminic acid (Neu5Ac9NAc) and compare it to the one with naturally occurring 9- O -acetyl- N -acetylneuraminic acid (Neu5,9Ac 2 ). Conformational resemblance of the two molecules was confirmed by computational molecular dynamics simulations. Microarray studies showed that the Neu5Ac9NAc-sialoglycan is a ligand for viruses naturally recognizing Neu5,9Ac 2 , with a similar affinity but with much improved stability in handling and study. Feeding of Neu5Ac9NAc or Neu5,9Ac 2 to mammalian cells resulted in comparable incorporation and surface expression as well as binding to 9-O-acetyl-Sia-specific viruses. However, cells fed with Neu5Ac9NAc remained resistant to viral esterases and showed a slower turnover. This simple approach opens numerous research opportunities that have heretofore proved intractable. Graphic Abstract ACS Electronic Supporting Info


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기