본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Accounts of chemical research v.50 no.1, 2017년, pp.58 - 65   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

The Ins and Outs of Lipid Flip-Flop

Allhusen, John S. Conboy, John C.
  • 초록  

    Conspectus Our current view of cellular membranes centers on the fluid-mosaic model, which envisions the cellular membrane as a “liquidlike” bilayer of lipids, cholesterol, and proteins that freely diffuse in two dimensions. In stark contrast, the exchange of materials between the leaflets of a bilayer was presumed to be prohibited by the large enthalpic barrier associated with translocating hydrophilic materials, such as a charged lipid headgroup, through the hydrophobic membrane core. This static picture with regard to lipid translocation (or “flip-flop” as it is affectionately known) has been a long-held belief in the study of membrane dynamics. The current accepted membrane model invokes specific protein flippase (inward moving), floppase (outward moving), and scramblase (bidirectional) enzymes that assist in the movement of lipids between the leaflets of cellular membranes. The low rate of protein-free lipid flip-flop has also been a cornerstone of our understanding of the bilateral organization of cellular membrane components, specifically the asymmetric distribution of lipid species found in the luminal and extracellular leaflets of the plasma membrane of eukaryotic cells. Much of the previous work contributing to our current understanding of lipid flip-flop has utilized fluorescent- or spin-labeled lipids. However, there is growing evidence that these lipid probes do not accurately convey the dynamics and thermodynamics of native (unlabeled) lipid motion. This Account summarizes our research efforts directed toward developing a deep physical and chemical understanding of protein-free lipid flip-flop in phospholipid membrane models using sum-frequency vibrational spectroscopy (SFVS). Our use of SFVS enables the direct measurement of native lipid flip-flop in model membranes. In particular, we have explored the kinetic rates and activation thermodynamics of lipid translocation as a means of deciphering the underlying chemical and physical directors governing this process. By means of transition state theory, the contributions from enthalpy and entropy on the activation energy barrier to lipid flip-flop have been explored in detail for a variety of lipid species and membrane compositions. Specifically, the effect of lipid structure and packing and the inclusion of cholesterol and transmembrane peptides on the rates and thermodynamics of lipid translocation have been investigated in detail. It is our hope that these studies will provide a new perspective on lipid translocation in biological membranes and the role of lipid flip-flop in generating and maintaining cell membrane lipid asymmetry. Graphic Abstract


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기