본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Analytical chemistry v.89 no.2, 2017년, pp.1254 - 1259   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Data Streaming for Metabolomics: Accelerating Data Processing and Analysis from Days to Minutes

Montenegro-Burke, J. Rafael (Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, ) ; Aisporna, Aries E. (Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, ) ; Benton, H. Paul (Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, ) ; Rinehart, Duane (Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, ) ; Fang, Mingliang (Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, ) ; Huan, Tao (Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, ) ; Warth, Benedikt (Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, ) ; Forsberg, Erica (Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 9 ) ; Abe, Brian T. ; Ivanisevic, Julijana ; Wolan, Dennis W. ; Teyton, Luc ; Lairson, Luke ; Siuzdak, Gary ;
  • 초록  

    The speed and throughput of analytical platforms has been a driving force in recent years in the “omics” technologies and while great strides have been accomplished in both chromatography and mass spectrometry, data analysis times have not benefited at the same pace. Even though personal computers have become more powerful, data transfer times still represent a bottleneck in data processing because of the increasingly complex data files and studies with a greater number of samples. To meet the demand of analyzing hundreds to thousands of samples within a given experiment, we have developed a data streaming platform, XCMS Stream, which capitalizes on the acquisition time to compress and stream recently acquired data files to data processing servers, mimicking just-in-time production strategies from the manufacturing industry. The utility of this XCMS Online-based technology is demonstrated here in the analysis of T cell metabolism and other large-scale metabolomic studies. A large scale example on a 1000 sample data set demonstrated a 10 000-fold time savings, reducing data analysis time from days to minutes. Further, XCMS Stream has the capability to increase the efficiency of downstream biochemical dependent data acquisition (BDDA) analysis by initiating data conversion and data processing on subsets of data acquired, expanding its application beyond data transfer to smart preliminary data decision-making prior to full acquisition. Graphic Abstract ACS Electronic Supporting Info


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기