본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Human reproduction v.32 no.2, 2017년, pp.409 - 417   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Bisphenol-A exposure and gene expression in human luteinized membrana granulosa cells in vitro

Mansur, Abdallah (Infertility and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Hashomer 52561, Israel ) ; Israel, Ariel (Infertility and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Hashomer 52561, Israel ) ; Combelles, Catherine M.H. (Biology Department, Middlebury College, Middlebury, VT, USA ) ; Adir, Michal (Infertility and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Hashomer 52561, Israel ) ; Racowsky, Catherine (Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA ) ; Hauser, Russ (Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA ) ; Baccarelli, Andrea A. (Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA ) ; Machtinger, Ronit (Infertility and IVF Unit, Department of ) ;
  • 초록  

    STUDY QUESTION Does bisphenol-A (BPA) affect gene expression in human membrana granulosa cells (MGC)? SUMMARY ANSWER In vitro, short exposure to supra-physiological concentrations of BPA alters human MGC gene expression. WHAT IS KNOWN ALREADY Exposure to BPA may interfere with reproductive endocrine signaling. In vitro studies, mostly in animal models, have shown an inverse correlation between exposure to BPA and follicular growth, meiosis, and steroid hormone production in granulosa cells. STUDY DESIGN, SIZE, DURATION Primary cultures of MGC obtained from 24 patients undergoing IVF (for PGD, male factor infertility or unexplained infertility) were exposed to various concentrations of BPA (0, 0.02, 0.2, 2 or 20 µg/ml) for 48 h. PARTICIPANTS/MATERIALS, SETTING, METHODS The study was conducted in a university-affiliated hospital. Microarray analysis was used to identify genes exhibiting expression changes following BPA exposure. Genes significantly altered were identified based on changes greater than 2-fold relative to the control group (not treated by BPA) and a Student's t -test P -value <0.05. Statistical significance was adjusted for multiple comparisons using the Benjamini–Hochberg method. Alterations in the expression of genes that are involved in the enriched functional annotations altered by BPA at the concentration of 20 µg/ml were confirmed by real-time PCR. MAIN RESULTS AND THE ROLE OF CHANCE A distinct pattern of gene expression was observed in primary cultures of MGC exposed to the highest BPA concentration compared with untreated cells. We identified 652 genes that exhibited at least 2-fold differences in expression after BPA exposure (all P < 0.05 versus untreated). These genes were significantly enriched for annotations related to cell cycle progression, segregation of chromosomes, steroid metabolism, apoptosis, lipid synthesis, oocyte maturation and chromosomal alignment. No significant changes in gene expression were found at the lower doses of BPA most relevant to human exposure. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Human exposure to BPA in vivo occurs over long periods of time. In this in vitro model, cells were exposed to the chemical for 48 h only. Thus, the effects of BPA on the human follicle might be underestimated. WIDER IMPLICATIONS OF THE FINDINGS As BPA exposure is ubiquitous, understanding the effects of the chemical on the ovary, specifically in women of reproductive age, has public health significance. The clinical evidence to date points to an association between BPA exposure and impaired IVF outcome, although not all studies have shown negative effects. Our study adds valuable mechanistic information showing that exposure to BPA alters granulosa cell gene expression at high and supra-physiological doses. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grant number 1936/12 from the ISF. The authors have nothing to disclose.


  • 주제어

    bisphenol-a .   mural granulosa cells .   cell cycle .   microarray .   ovarian physiology .   reproductive endocrine signaling.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 이용한 콘텐츠
이 논문과 함께 출판된 논문 + 더보기