본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Proceedings of the National Academy of Sciences of the United States of America v.114 no.4, 2017년, pp.657 - 662   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases

Zickfeld, Kirsten (Department of Geography, Simon Fraser University, Burnaby, BC, Canada V5A 1S6 ); Solomon, Susan (Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 ); Gilford, Daniel M. (Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 );
  • 초록  

    Significance Human activities such as fossil-fuel burning have increased emissions of greenhouse gases (GHGs), which have warmed the Earth’s atmosphere and ocean and caused sea levels to rise. Some of these GHGs (e.g., methane) have atmospheric lifetimes of decades or less, whereas others (e.g., carbon dioxide) persist for centuries to millennia. As policy seeks to reduce climate changes, it is important to understand how mitigation of different gases each contributes to this goal. Our study shows that short-lived GHGs contribute to thermal expansion of the ocean over much longer time scales than their atmospheric lifetimes. Actions taken to reduce emissions of short-lived gases could mitigate centuries of additional future sea-level rise. Mitigation of anthropogenic greenhouse gases with short lifetimes (order of a year to decades) can contribute to limiting warming, but less attention has been paid to their impacts on longer-term sea-level rise. We show that short-lived greenhouse gases contribute to sea-level rise through thermal expansion (TSLR) over much longer time scales than their atmospheric lifetimes. For example, at least half of the TSLR due to increases in methane is expected to remain present for more than 200 y, even if anthropogenic emissions cease altogether, despite the 10-y atmospheric lifetime of this gas. Chlorofluorocarbons and hydrochlorofluorocarbons have already been phased out under the Montreal Protocol due to concerns about ozone depletion and provide an illustration of how emission reductions avoid multiple centuries of future TSLR. We examine the “world avoided” by the Montreal Protocol by showing that if these gases had instead been eliminated in 2050, additional TSLR of up to about 14 cm would be expected in the 21st century, with continuing contributions lasting more than 500 y. Emissions of the hydrofluorocarbon substitutes in the next half-century would also contribute to centuries of future TSLR. Consideration of the time scales of reversibility of TSLR due to short-lived substances provides insights into physical processes: sea-level rise is often assumed to follow air temperature, but this assumption holds only for TSLR when temperatures are increasing. We present a more complete formulation that is accurate even when atmospheric temperatures are stable or decreasing due to reductions in short-lived gases or net radiative forcing.


  • 주제어

    climate change .   sea-level rise .   greenhouse gases .   reversibility .   Montreal Protocol.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기