본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Construction & building materials v.134, 2017년, pp.91 - 103   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Seismic performance of CFRP-confined circular high-strength concrete columns with high axial compression ratio

Wang, Daiyu (Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education (Harbin Institute of Technology, Harbin, China ) ; Wang, Zhenyu (Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education (Harbin Institute of Technology, Harbin, China ) ; Smith, Scott T. (School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia ) ; Yu, Tao (Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, Australia ) ;
  • 초록  

    Abstract This paper presents an experimental investigation on the seismic performance of circular high-strength concrete (HSC) columns confined with carbon fiber-reinforced polymer (CFRP) composites. A total of eleven 1/2 scale columns were constructed of which nine were confined with CFRP wraps at potential plastic hinge regions. All columns were tested under combined high axial compression load and cyclic lateral displacement excursions. The primary variables of the tests were the axial compression load level, concrete strength, and the extent of the CFRP wrapping at the plastic hinge region. In order to evaluate the residual seismic capacity of CFRP-confined columns, three of the confined specimens were initially loaded to induce damage. The load was then removed after which the same columns were loaded to failure. The failure modes, hysteretic responses, energy dissipation and stiffness degradation characteristics, and the equivalent viscous damping ratios of the tested columns were then presented and interpreted. The test results showed that CFRP wraps applied at potential hinge regions resulted in significantly improved ductility and energy dissipation capacities of the columns even when tested under a high axial compression ratio. The plastic deformation capacity of the CFRP-confined columns was observed to decrease with an increase of axial compression ratio though. In addition, pre-damaged CFRP-confined columns may have insufficient residual seismic capacity due to the damage and failure in the unconfined regions under high axial compression load levels. Finally, empirical models of the degradation of effective and unloading stiffness are provided based on the test results. Highlights Seismic performance of high-strength concrete (HSC) columns confined with CFRP. Confinement of potential plastic hinge regions with CFRP wraps. Experimental investigation of half-scale concrete columns. Energy dissipation, stiffness degradation and damping characteristics quantified.


  • 주제어

    FRP .   High-strength concrete .   Confinement .   Columns .   Seismic performance.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기