본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Construction & building materials v.134, 2017년, pp.684 - 693   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

An ANN model to correlate roughness and structural performance in asphalt pavements

Sollazzo, G. (Dep. of Engineering, University of Messina, Vill. S. Agata, C.da di Dio, 98166 Messina, Italy ) ; Fwa, T.F. (Dep. of Civil and Environmental Engineering, National University of Singapore, 1 Eng. Drive 2, 117576 Singapore, Singapore ) ; Bosurgi, G. (Dep. of Engineering, University of Messina, Vill. S. Agata, C.da di Dio, 98166 Messina, Italy ) ;
  • 초록  

    Abstract In this paper, using a large database from the Long Term Pavement Performance program, the authors developed an Artificial Neural Network (ANN) to estimate the structural performance of asphalt pavements from roughness data. Considering advantages of modern high-performance survey devices in the acquisition of road pavement functional parameters, it would be of practical significance if the structural state of a pavement could be estimated from its functional conditions. To differentiate various road section conditions, several significant input parameters, related to traffic, weather, and structural aspects, have been included in the analysis. The results are very interesting and prove that the ANN represents an adequate model to evidence this relation. The papers shows the effectiveness of the adoption of a large database for the analysis of the correlation. ANN provides also better results in comparison with Linear Regression. Further, the authors trained three different ANNs to analyse the effects of modified datasets and different variables. The numerical outcomes confirm that, by using this approach, it is possible to correlate with good accuracy roughness and structural performance, allowing road agencies to actually reduce the deflection test frequency, since they are generally more costly, time consuming, and disruptive to traffic than functional surveys. Highlights Proposal of a neural network method to correlate roughness and structural capacity. Adoption of an LTPP-based database, including many influencing parameters. Comparison of various networks to analyse the method potential. The method can reduce traditional deflection tests (HWD, FWD) frequency for PMSs.


  • 주제어

    Artificial Neural Network .   Roughness .   Structural performance .   Asphalt pavements .   LTPP.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기