본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Hidden defect recognition based on the improved ensemble empirical decomposition method and pulsed eddy current testing

Liu, B. ; Huang, P. ; Zeng, X. ; Li, Z. ;
  • 초록  

    This article presents a new approach for recognizing hidden defects in conductive structures based on the improved ensemble empirical decomposition (IEEMD) and the pulsed eddy current (PEC) testing technique. First, the ensemble empirical mode decomposition (EEMD) method is improved in terms of envelope fitting, end effects and false components. Then, feature vector composed of the principal marginal spectrum peaks are extracted by the help of Hilbert weighted frequencies and characteristic frequencies. It has been verified by simulation signals that the IEEMD method can obtain more accurate intrinsic mode function components (IMFs). The proposed feature extraction method may recognize various hidden defect in the rail specimen with satisfying accuracy and robustness to such disturbances as noise and liftoff.


  • 주제어

    Improved ensemble empirical mode decomposition (IEEMD) .   Pulsed eddy current (PEC) .   Marginal spectrum(MS) .   Hidden defect.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기