본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Renewable energy v.105, 2017년, pp.539 - 546   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Mesophilic and thermophilic anaerobic digestion of lipid-extracted microalgae N.?gaditana for methane production

Capson-Tojo, Gabriel (Department of Chemical Engineering, University of La Frontera, Av. Francisco Salazar, 01145, Temuco, Chile ); Torres, Alvaro ( Department of Chemical Engineering, University of La Frontera, Av. Francisco Salazar, 01145, Temuco, Chile ); Muñ ( Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain ); oz, Raú ( Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, Institute of Chemical Technology, Technická ); l ( 5, 166 28, Prague 6, Czechia ); Bartacek, Jan ( Department of Chemical Engineering, University of La Frontera, Av. Francisco Salazar, 01145, Temuco, Chile ); Jeison, David ( );
  • 초록  

    Abstract In the last years, a huge effort has been made to make biodiesel production from microalgae a feasible option. Besides the potential of biodiesel for replacing fossil fuels as a cleaner alternative, some limitations have still to be overcome. Among them, the low energy yields of the process and the high-energy requirements of the harvesting and drying steps lead to a high cost per litre of fuel. In this context, anaerobic digestion of the microalgal biomass after lipid extraction can improve the energy balance of the process, by producing methane and revalorizing a waste generated during biodiesel production. In this study, the production of biogas by anaerobic digestion of the marine microalgae Nannochloropsis gaditana after oil extraction was studied. As the hydrolysis is known to be the rate-limiting step of anaerobic digestion of solid substrates, the influence of the process temperature on this step was assessed. For this purpose, two different anaerobic sludges, i.e. mesophilic (35?°C) and thermophilic (55?°C), were used as inocula for different batch tests and for two continuous anaerobic bioreactors. The influence of the oil extraction process on the structural integrity of the microalgae was also studied. The results obtained from scanning electron microscopy and flow cytometry showed that the lipid extraction did not cause cell lysis, but the structure of their surface was affected by the process. Batch assays showed that thermophilic conditions did not improve the biomethane potentials when compared to mesophilic conditions. Two continuous anaerobic bioreactors operated for 120 days confirmed the batch results. However, measurements of the chemical oxygen demand showed that the soluble fraction in the thermophilic reactor was higher than under mesophilic conditions, indicating an improved hydrolysis step. This was confirmed by the results of scanning electron microscopy and flow cytometry, which suggested a more intense disintegration of microalgae in the thermophilic reactor, indicating a greater degree of hydrolysis. Nevertheless, this advantage of thermophilic temperatures over mesophilic conditions did not improve the methane productivity. Highlights The effect of temperature and lipid extraction on biomethane production was studied. Lipid extraction affected the structure of the surfaces of the microalgae. A higher degree of hydrolysis was observed at thermophilic temperature. No significantly different methane yields were found at both temperatures.


  • 주제어

    Anaerobic digestion .   Nannochloropsis gaditana .   Microalgae .   Methane .   Lipid-extracted biomass.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기