본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

해당자료는 외국학술지지원센터(FRIC)에서 무료 원문복사신청서비스를 제공합니다.
Renewable energy v.105, 2017년, pp.569 - 582   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Machine learning methods for solar radiation forecasting: A review

Voyant, Cyril (University of Corsica/CNRS UMR SPE 6134, Campus Grimaldi, 20250, Corte, France ); Notton, Gilles (University of Corsica/CNRS UMR SPE 6134, Campus Grimaldi, 20250, Corte, France ); Kalogirou, Soteris (Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, P.O. Box 50329, Limassol, 3401, Cyprus ); Nivet, Marie-Laure (University of Corsica/CNRS UMR SPE 6134, Campus Grimaldi, 20250, Corte, France ); Paoli, Christophe (University of Corsica/CNRS UMR SPE 6134, Campus Grimaldi, 20250, Corte, France ); Motte, Fabrice (University of Corsica/CNRS UMR SPE 6134, Campus Grimaldi, 20250, Corte, France ); Fouilloy, Alexis (University of Corsica/CNRS UMR SPE 6134, Campus Grimaldi, 20250, Corte, France );
  • 초록  

    Abstract Forecasting the output power of solar systems is required for the good operation of the power grid or for the optimal management of the energy fluxes occurring into the solar system. Before forecasting the solar systems output, it is essential to focus the prediction on the solar irradiance. The global solar radiation forecasting can be performed by several methods; the two big categories are the cloud imagery combined with physical models, and the machine learning models. In this context, the objective of this paper is to give an overview of forecasting methods of solar irradiation using machine learning approaches. Although, a lot of papers describes methodologies like neural networks or support vector regression, it will be shown that other methods (regression tree, random forest, gradient boosting and many others) begin to be used in this context of prediction. The performance ranking of such methods is complicated due to the diversity of the data set, time step, forecasting horizon, set up and performance indicators. Overall, the error of prediction is quite equivalent. To improve the prediction performance some authors proposed the use of hybrid models or to use an ensemble forecast approach. Highlights Overview of forecasting methods of solar irradiation using machine learning approaches. Performance ranking of such methods is complicated. ANN and ARIMA methods are equivalent in term of quality of prediction. Predictor ensemble methodology is always better than simple predictors. SVM, regression trees and random forests, as the results given are very promising.


  • 주제어

    Solar radiation forecasting .   Machine learning .   Artificial neural networks .   Support vector machines .   Regression.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기