본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Building and environment v.114, 2017년, pp.1 - 10   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Machine learning approaches to predict thermal demands using skin temperatures: Steady-state conditions

Dai, Changzhi (Department of Architecture, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, China ); Zhang, Hui ( Center for the Built Environment, UC Berkeley, USA ); Arens, Edward ( Center for the Built Environment, UC Berkeley, USA ); Lian, Zhiwei ( Department of Architecture, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, China );
  • 초록  

    Abstract Inefficient controlling strategies in heating and cooling systems have given rise to a large amount of energy waste and to widespread complaints about the thermal environment in buildings. An intelligent control method based on a support vector machine (SVM) classifier is proposed in this paper. Skin temperatures are the only inputs to the model and have shown attractive prediction power in recognizing steady state thermal demands. Data were accumulated from two studies to consider potential use for either individuals or a group of occupants. Using a single skin temperature correctly predicts 80% of thermal demands. Using combined skin temperatures from different body segments can improve the model to over 90% accuracy. Results show that three skin locations contained enough information for classification and more would cause the curse of dimensionality. Models using different skin temperatures were compared. Optimal parameters for each model were provided using grid search technique. Considering the overfitting possibility and the cases without learning processes, SVM classifiers with a linear kernel are preferred over Gaussian kernel ones. Highlights An intelligent control method for heating and cooling systems is proposed. Using skin temperatures in SVM models predicts steady-state thermal demands well. Using a combination of skin temperatures helps to improve model performance. Skin temperatures have more power in predicting heating demands than cooling demands. SVM models with linear kernels are preferred to those with Gaussian kernels.


  • 주제어

    Thermal environment .   Skin temperature .   Support vector machine .   Intelligent control.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기