본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Neuroscience letters v.639, 2017년, pp.43 - 48  

Nicotinic receptors modulate the onset of reactive oxygen species production and mitochondrial dysfunction evoked by glutamate uptake block in the rat hypoglossal nucleus

Tortora, M. ; Corsini, S. ; Nistri, A. ;
  • 초록  

    In several neurodegenerative diseases, glutamate-mediated excitotoxicity is considered to be a major process to initiate cell degeneration. Indeed, subsequent to excessive glutamate receptor stimulation, reactive oxygen species (ROS) generation and mitochondrial dysfunction are regarded as two major gateways leading to neuron death. These processes are mimicked in an in vitro model of rat brainstem slice when excitotoxicity is induced by DL-threo-β-benzyloxyaspartate (TBOA), a specific glutamate-uptake blocker that increases extracellular glutamate. Our recent study has demonstrated that brainstem hypoglossal motoneurons, which are very vulnerable to this damage, were neuroprotected from excitotoxicity with nicotine application through the activation of nicotinic acetylcholine receptors (nAChRs) and subsequent inhibition of ROS and mitochondrial dysfunction. The present study examined if endogenous cholinergic activity exerted any protective effect in this pathophysiological model and how ROS production (estimated with rhodamine fluorescence) and mitochondrial dysfunction (measured as methyltetrazolium reduction) were time-related during the early phase of excitotoxicity (0-4h). nAChR antagonists did not modify TBOA-evoked ROS production (that was nearly doubled over control) or mitochondrial impairment (25% decline), suggesting that intrinsic nAChR activity was insufficient to contrast excitotoxicity and needed further stimulation with nicotine to become effective. ROS production always preceded mitochondrial dysfunction by about 2h. Nicotine prevented both ROS production and mitochondrial metabolic depression with a delayed action that alluded to a complex chain of events targeting these two lesional processes. The present data indicate a relatively wide time frame during which strong nAChR activation can arrest a runaway neurotoxic process leading to cell death.


  • 주제어

    Excitotoxicity .   TBOA .   ROS .   Brainstem .   Nicotine .   Motoneuron.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기